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Abstract

The cost-sharing connection game is a variant of routing games on a network. In this model, given a directed

graph with edge-costs and edge-capacities, each agent wants to construct a path from a source to a sink with

low cost. The cost of each edge is shared by the users based on a cost-sharing function. One of simple cost-

sharing functions is defined as the cost divided by the number of users. In fact, most of the previous papers

about cost-sharing connection games addressed this cost-sharing function. It models an ideal setting, where no

overhead arises when people share things, though it might be quite rare in real life; it is more realistic to consider

the setting that the cost that an agent should pay is the original cost per the number of the agents plus the

overhead. In this paper, we model the more realistic scenario of cost-sharing connection games by generalizing

cost-sharing functions. Our generalization gives not a concrete generalized cost-sharing function but a class of

cost-sharing functions satisfying the following natural properties: they are (1) non-increasing, (2) lower bounded

by the original cost per the number of the agents, and (3) upper bounded by the original cost, which enables to

represent various scenarios of cost-sharing. We investigate the Price of Anarchy (PoA) and the Price of Stability

(PoS) of sum-cost and max-cost criteria under the generalized cost-sharing function. In spite of the generalization,

we obtain the same bounds of PoA and PoS as the cost-sharing with no overhead except PoS of sum-cost, where

the PoS of sum-cost increases from log n to n by the generalization. All the bounds that we give are tight. We

further investigate the bounds from the viewpoints of graph classes, such as parallel-rinks graphs, series-parallel

graphs, and directed acyclic graphs, which show critical differences of PoS/PoA values.

1 Introduction

The capacitated symmetric cost-sharing connection

game (CSCSG) is a network design model of multiple

agents’ sharing costs to construct a network infrastruc-

ture for connecting a given source-sink pair. In the

game, a possible network structure is given, but actual

links are not built yet. For example, imagine to build

an overlay network structure on a physical network.

Each agent wants to construct a path from source s to

sink t. To construct a path, each agent builds links by

paying the costs associated with them. Two or more

agents can commonly use a link if the number of agents

is within the capacity associated with the link, and in

such a case, the cost of the link is fairly shared by the

agents that use it. Thus, the more agents use a com-

mon link, the less cost of the link they pay. Under this
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setting, each agent selfishly chooses a path to construct

so that they minimize their costs to pay. The CSCSG is

quite useful and can model many real-world situations

for sharing the cost of a designed network, such as a vir-

tual overlay, multicast tree, or other sub-network of the

Internet. The CSCSG is firstly introduced by Feldman

and Ron [8].

In the previous studies of CSCSG, the link cost is

fairly shared, which means that the total cost paid for

a link does not vary even if any number of agents use

it. However, sharing resources yields more or less extra

costs (overheads) in realistic cost-sharing situations; by

increasing the number of users, extra commission fees

are charged, service degradation occurs and so on. The

existing models are not powerful enough to handle such

situations.

In this paper, we model the more realistic scenario

of CSCSG by generalizing cost-sharing functions. Our

generalization gives not a concrete generalized cost-

sharing function but a class of cost-sharing functions

satisfying certain natural properties. Let pe and ce be
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the cost and capacity associated with link (edge) e, re-

spectively. Suppose that x agents use link e, where

x ≤ ce. In our model, a cost-sharing function fe(x)

for link e is (1) non-increasing with respect to x, (2)

fe(x) ≥ pe/x, and (3) fe(1) = pe. Condition (1) is a

natural property in cost-sharing models, (2) represents

the situation that if two or more agents use a link, over-

heads may arises, and (3) represents that no overhead

arises when only an agent uses the edge. Note that (2)

implies that (2’) the total cost paid by all the agents for

e is at least pe. Also note that by combining properties

(1) and (3) we have (3’) fe(x) ≤ pe for any positive

integer x, which implies that the overhead is not too

large and a cost paid by an agent is upper bounded by

pe; otherwise no one wants to cooperate. We emphasize

that this significant generalization does not restrict any

nature of fair cost-sharing. We believe that any natural

fair cost-sharing function is in this scheme. Note that

the cost-sharing function in the previous studies [8, 6, 7]

is fe(x) = pe/x, which clearly satisfies (1), (2) and (3).

We investigate the Price of Anarchy (PoA) and the

Price of Stability (PoS) of the game. A pure Nash equi-

librium (we simply say Nash equilibrium) is a state

where no agent can reduce its cost by changing the

path that he/she currently chooses. Such a Nash equi-

librium does not always exist in a general game, but it

does in CSCSG. That is, a CSCSG converges to a Nash

equilibrium. Thus, a major interest of analyzing games

is to measure a goodness of Nash equilibrium. As so-

cial goodness measures, we consider two criteria. One

is sum-cost criterion, where the social cost function is

defined as the summation of the costs paid by all the

agents, and the other is max-cost criterion, where it is

defined as the maximum among the costs paid by all

the agents. Both PoA and PoS are well used measures

for evaluating the efficiency of Nash equilibria of games.

The PoA is the ratio between the cost of the worst Nash

equilibrium and the social optimum, whereas the PoS

refers to the ratio between the cost of the best Nash

equilibrium and the social optimum.

The previous studies also investigate PoA and PoS

of these cost criteria under their game models. For de-

tails, see Section 1.2. In spite of the generalization,

we obtain the same bounds of PoA and PoS as the

cost-sharing with no overhead except PoS of sum-cost,

where the PoS of sum-cost increases from log n to n

by the generalization. All the bounds that we give for

CSCSG are tight. We further investigate the bounds

from the viewpoints of graph classes, such as parallel-

rinks graphs, series-parallel graphs, and directed acyclic

graphs, which show critical differences of PoS/PoA val-

ues. The details are summarized in Section 1.1.

1.1 Our contribution

In this paper, we investigate the PoA and the PoS of

capacitated symmetric cost-sharing connection games

under a generalized cost-sharing scheme as explained

above. We address two criteria of the social cost: sum-

cost and max-cost.

As for the sum-cost case, we first show that PoA is

unbounded even on directed acyclic graphs (DAGs).

On the other hand, on series-parallel graphs (SP

graphs), we show that PoA under sum-cost is at most n

and it is tight, that is, there is an example whose PoA is

n. For PoS, we show that it is at most n and there is an

example whose PoS under sum-cost is n. This gives the

difference from the previous study, which shows that

PoS is at most log n and it is tight with ordinary fair

cost-sharing functions [8].

Next, we show the results on the max-cost. As with

the sum-cost, we show that PoA under max-cost is un-

bounded on directed acyclic graphs. On SP graphs, we

show that PoA is at most n and it is tight. We also

show that PoS is at most n and it is tight. These re-

sults imply that the significant generalization does not

affect PoA and PoS under max-cost.

We then discuss the capacitated asymmetric cost-

sharing connection games where agents have different

source and sink nodes. We observe that the lower

bounds of PoA and PoS of CSCSG hold for the asym-

metric case. Moreover, we show that PoS under sum-

cost is at most n and PoS under max-cost is at most

n2.

As a final remark, our results presented in this pa-

per are for directed graphs, but all the results except

for directed acyclic cases can be easily modified to undi-

rected cases by a standard transformation, for example.

In the sense, our results are generic, which includes the

results of [8, 6].

The results in this paper are summarized in Tables 1

and 2, respectively.

*1 This is proved by using the potential function Φ(s) =∑
e∈E

∑xe(s)
x=1

pe
x
. Although Anshelevich et al. only gave

the upper bound for the uncapacitated case, we can easily
observe that it holds for the capacitated case.

*2 Feldman and Ron gave the lower bound for undirected
parallel-link graphs in [8]. However, it can be modified
to a directed parallel link graph.
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Table 1. The summary of PoA and PoS of CSCSG under sum-cost criterion.

parallel-link series-parallel DAG General

Uncapacitated
PoA n [1]

PoS 1 [1]

Capacitated
PoA n (UB [Thm. 2], LB [1]) unbounded [Thm. 1]

PoS log n (UB [1]*1, LB [8]*2)

Capacitated+General cost PoA n [Thm. 2] unbounded [Thm. 1]

[Our Setting] PoS n [Thm. 3]

Table 2. The summary of PoA and PoS of CSCSG under max-cost criterion.

parallel-link series-parallel DAG General

Uncapacitated
PoA n [1]

PoS 1 [1]

Capacitated
PoA n (UB [Thm. 5], LB [8]*2) unbounded [Thm. 4]

PoS n (UB [6], LB [8]*2)

Capacitated+General cost PoA n [Thm. 5] unbounded [Thm. 4]

[Our Setting] PoS n [Thm. 6]

1.2 Related work

The cost-sharing connection game (CSG) is firstly

introduced by [1]. Anshelevich et al. show that for

uncapacitated cost-sharing connection game, the upper

bound of PoA under sum-cost is at most n, and it is

tight. For PoS, under sum-cost is 1. They also show

that the PoS under sum-cost of every asymmetric CSG,

where agents have different source and sink nodes, can

be bounded by log n. Epstein, Feldman and Mansour

study the strong equilibria of cost-sharing connection

games [5].

Feldman and Ron [8] introduce a capacitated variant

of CSGs on undirected graphs. For the variant, they

give the tight bounds of PoA and PoS under both sum-

cost and max-cost for several graph classes except the

PoS under max-cost for general graphs. Note that their

results only holds for symmetric CSGs. Erlebach and

Radoja fill the gap of the exception [6]. Feldman and

Ofir investigate the strong equilibria for the capacitated

version of CSGs [7].

In the literature of computing a Nash equilibrium,

Anshelevich et al. prove that computing cheap Nash

equilibria is NP-complete on CSGs [1]. Also, Vasilis

show that finding a Nash equilibrium on a CSG is PLS-

complete [13].

There are vast applications of CSGs. A natural ap-

plication is the decision-making in sharing economy

[1, 2, 3]. Radko and Laclau mention the relationship

between CSGs and machine learning [12].

The previous studies for CSCSG do not consider any

overhead, but when we share some resource (or tasks)

it yields some overhead in general. In fact, controlling

overheads to share tasks is a major issue in grid/parallel

computing fields [9]. Furthermore, in the context of

sharing economy, the transaction cost is considered a

part of overheads [10].

2 Model

2.1 Capacitated Symmetric Cost-Sharing Con-

nection Games

A capacitated symmetric cost-sharing connection

game (CSCSG) ∆ is a tuple:

∆ = (n,G = (V,E), s, t, {pe}e∈E , {ce}e∈E)

where n is the number of agents, G = (V,E) is a di-

rected graph, s, t ∈ V are the source and sink nodes,

pe ∈ R≥0 is the cost of an edge e, and ce ∈ N≥0 is

the capacity of an edge e, i.e., the upper bound of the

number of agents that can use edge e. An edge is also

called a link. The purpose of each agent j is to con-

struct an s-t path in G. An s-t path chosen by agent

j is called a strategy of agent j, denoted by sj . A tu-

ple s = (s1, . . . , sn) of strategies of n agents is called
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a strategy profile. We denote by E(sj) ⊆ E the set

of edges in s-t path sj . Namely, E(sj) is the set of

edges used by agent j. Moreover, for a strategy profile

s = (s1, . . . , sn), we define E(s) =
∪

j E(sj), which is

the set of edges used in s.

Let xe(s) = |{j | e ∈ E(sj)}| be the number of agents

who use edge e in a strategy profile s. A strategy profile

s is said to be feasible if s satisfies xe(s) ≤ ce for every

e ∈ E. Furthermore, we say the game is feasible if there

is at least one feasible strategy profile. In this paper,

we deal with only feasible games, that is, games have

at least one feasible strategy profile.

2.2 Cost-Sharing Function and Social Cost

In a general network design game, for a strategy pro-

file s, every agent j who uses an edge e should pay some

cost based on a payment function fe,j(xe(s)); agent j

pays
∑

e∈E(sj)
fe,j(xe(s)) in total. In cost sharing con-

nection games, the cost imposed to an edge e is fairly

divided into the agents using e; the cost paid by an

agent using e is determined by a cost-sharing function

fe(xe(s)), and the total cost of agent j is

pj(s) =

{∑
e∈E(sj)

fe(xe(s)) ∀e ∈ E(sj), xe(s) ≤ ce

∞ otherwise
.

In this paper, we assume that a cost-sharing function

fe(x) satisfies (1) non-increasing, (2) fe(x) ≥ pe/x and

(3) fe(1) = pe.

We denote by (∆, F ) a CSCSG on ∆ with the set of

cost-sharing functions F = {fe | e ∈ E}. To emphasize

all functions in F satisfy the properties (1), (2) and

(3), we say that F is in the generalized cost-sharing

scheme, denoted by F∗. Recall that (2) implies (2’)

the total cost paid by all the agents for e is at least

pe, and (3’) fe(x) ≤ pe for any x ≥ 1. If there is

no overhead for sharing an edge e, the cost agent j

pays for e under s is defined by fe(xe(s)) = pe/xe(s).

Let us denote Ford = {pe/xe(s) | e ∈ E}, and clearly

Ford ∈ F∗. Previous studies such as [1, 5, 6, 7, 8] adopt

this special case (∆, Ford).

We further denote by Fall the class of any type of pay-

ment functions, which include non-fair or even mean-

ingless ones in the cost-sharing context. We introduce

this class of functions just to contrast it with F∗. For

a class F of cost-sharing functions, we sometimes write

(∆,F) instead of writing “(∆, F ) for any F ∈ F”.

In CSCSGs, we consider two types of social costs for

strategy profiles. The sum-cost of a strategy profile

s is the total cost of all agents, that is, costsc(s) =∑
j pj(s). The max-cost of a strategy profile s is the

maximum among the costs paid by all the agents, that

is, costmc(s) = maxj pj(s).

2.3 The Existence of Nash Equilibrium

Given a strategy profile s, if there is an agent j such

that pj(s) > pj(s
′
j , s−j) for some s′j , agent j has an

incentive to change its strategy from sj to s′j . We call

this type of change a deviation. A strategy profile s is

called a Nash equilibrium if any agent does not have an

incentive to deviate from s, that is, pj(s) ≤ pj(s
′
j , s−j)

holds for any agent j and any s′j , where s′j is a new

strategy of agent j and s−j = s \ {sj} is the strategy

profile s excluding sj . We denote the set of Nash equi-

libria in CSCSG (∆, F ) by NE(∆, F ).

In the proof of Theorem 2.1 of [1], it is shown

that any non-capacitated network design game always

has a Nash equilibrium by an argument using a po-

tential function. Because we only consider feasible

games, a similar argument can be applied to CSCSG

(∆, F ) using the following potential function: Φ(s) =∑
e∈E

∑xe(s)
x=1 fe(x), where fe ∈ F .

Proposition 1. For any CSCSG (∆,Fall), there exists

a pure Nash equilibrium.

2.4 Price of Anarchy and Price of Stability

The Price of Anarchy (PoA) and the Price of Stabil-

ity (PoS) measure how inefficient the cost at a Nash

equilibrium is for the optimal cost. Let s∗sc be an op-

timal strategy profile under sum-cost, and s∗mc be an

optimal strategy profile under max-cost, respectively.

Then the PoA’s of (∆, F ) under sum-cost and max-cost

are defined as follows.

PoAsc(∆, F ) =
maxs∈NE(∆,F ) costsc(s)

costsc(s∗sc)

PoAmc(∆, F ) =
maxs∈NE(∆,F ) costmc(s)

costmc(s∗mc)

Similarly, the PoS’s of (∆, F ) under sum-cost and

max-cost are defined as follows.

PoSsc(∆, F ) =
mins∈NE(∆,F ) costsc(s)

costsc(s∗sc)

PoSmc(∆, F ) =
mins∈NE(∆,F ) costmc(s)

costmc(s∗mc)

When it is clear from the context, we sometimes omit

(∆, F ).

2.5 Graph Classes

A single source single sink directed acyclic graph is a

directed graph with exactly one source node s and sink

node t and without cycles. We simply call it a directed

acyclic graph (DAG) in this paper.



第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-B 5

A two-terminal series-parallel graph G is a directed

graph with exactly one source node s and sink node t

that can be constructed by a sequence of the following

operations [4]:

• Create a single directed edge (s, t).

• Given two two-terminal series-parallel graphs GX

with terminals sX and tX and GY with terminals

sY and tY , form a new graph S(GX , GY ) with ter-

minals s and t by identifying s = sX , tX = sY and

t = tY . We call this operation the series composi-

tion of X and Y .

• Given two two-terminal series-parallel graphs GX

with terminals sX and tX and GY with terminals

sY and tY , form a new graph P (GX , GY ) with ter-

minals s and t by identifying s = sX = sY and

t = tX = tY . We call this operation the parallel

composition of GX and GY .

Note that any two-terminal series-parallel graph is a

directed acyclic graph. We call a two-terminal series-

parallel graph a series-parallel graph (SP graph) for

simplicity [4], An SP graph G is a parallel-link graph

if it is produced by only parallel compositions of single

edges.

By the definitions of the above graphs, the following

inclusion relation holds:

Parallel-link graph ⊆ SP graph ⊆ DAG ⊆ General graph.

3 Capacitated Cost-Sharing Connec-
tion Games under Sum-Cost Crite-
rion

In this section, we give tight bounds of PoA and PoS

of CSCSG under sum-cost.

3.1 Price of Anarchy (PoA)

Feldman and Ron show that the PoAsc is unbounded

on capacitated undirected graphs when the cost-sharing

function is Ford, that is, fe(xe(s)) = pe/xe(s) for each

e ∈ E [8]. Because any CSCSG on capacitated undi-

rected graph can be transformed into a CSCSG on ca-

pacitated directed graph [6], the PoAsc is unbounded

on capacitated directed graphs.

3.1.1 Directed acyclic graphs

In this subsection, we show that the PoAsc of a

CSCSG (∆, Ford) is unbounded even on directed acyclic

graphs (DAG). In the proof, we give a directed acyclic

graph whose edge costs are represented by some vari-

ables. By controlling the variables, we can show that

PoAsc can be infinitely large.

Theorem 1. There exists a CSCSG (∆, Ford) on

s t

a c

b

(x, 1)

(x, 1)

(x, 1) (x, 1)

(x, 1)

(y, 1)(y, 1)

Figure 1. A CSCSG (∆, {pe/xe | e ∈ E}) on DAGs such that
PoAsc is unbounded. The cost and capacity of an edge e is
denoted by (pe, ce).

DAGs such that PoAsc is unbounded.

Proof. We show an example with two agents such that

the PoAsc is unbounded where x < y (see Figure 1).

Suppose that one agent uses path s → a → c → t,

and the other agent uses path s → b → t. Then the

sum-cost of this strategy profile is 5x.

On the other hand, consider the strategy profile such

that one agent uses path s → a → b → t and the

other agent uses path s → b → c → t. It is easy to

see that this strategy profile is a Nash equilibrium and

its sum-cost is 4x + 2y. Thus, the PoAsc is at least

(4x + 2y)/5x = 4/5 + 2y/5x. By taking y = x2 and x

arbitrary large, the PoAsc can be unbounded.

3.1.2 SP graphs

For SP graphs, we show that PoAsc is at most n, and

it is tight.

Feldman and Ron showed that the upper bound of

PoA on (undirected) SP graphs is n for the ordinary

fair cost-sharing function [8]. We claim that it actu-

ally holds for directed SP graphs and any cost-sharing

functions in F∗. We first introduce Lemma 1 by Feld-

man and Ron, which holds for any payment function.

Although the lemma is stated in the game-theoretic

context, the claim is essentially about the network flow.

Note that the original proof is for undirected SP graphs,

but it can be easily modified to directed cases, though

we omit the detail.

Lemma 1 ([8]). Let (∆,Fall) be a CSCSG on SP

graphs. For r, k ∈ N where r < k, let s be a feasible

strategy profile of k agents, and s′ be a feasible strategy

profile of r agents. Then, there is an s-t path sr+1 in

G that uses only edges used in s such that the strategy

profile (s′, sr+1) of r + 1 agents is feasible.

By using Lemma 1, we obtain the following lemma.

Note that Lemma 1 holds for any payment functions,

but Lemma 2 holds for any cost-sharing functions in

the generalized cost-sharing scheme.

Lemma 2. Let (∆,F∗) be a CSCSG on SP graphs,
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and let s∗ be an optimal strategy profile and s be a

strategy profile that is a Nash equilibrium in (∆,F∗)

under sum-cost. Then, the cost of each agent in s is at

most costsc(s
∗).

Proof. Let s∗ be an optimal strategy profile under

sum-cost and s be a strategy profile that is a Nash

equilibrium. Then we show that the cost of each agent

in s is at most costsc(s
∗). For the sake of contradiction,

we assume that there is an agent i whose cost pi(s) is

higher than costsc(s
∗). Let s−i be the strategy profile

for all agents except for agent i and si be the s-t path

chosen by agent i in s. Given the strategy profile s−i,

there is a feasible s-t path s′ that uses only edges in s∗

by Lemma 1. If agent i choose s-t path s′ instead of

si, we claim that the cost of agent i becomes at most

costsc(s
∗). This can be shown as follows. In the orig-

inal strategy s, agents using edge e pay fe(xe(s)) for

each, and in the new strategy (s−i, s
′), agent i needs to

pay fe(xe(s) + 1) for e ∈ E(s′) \ E(si). By taking the

summation, the total cost that agent i pays in (s−i, s
′)

is ∑
e∈E(s′)∩E(si)

fe(xe) +
∑

e∈E(s′)\E(si)

fe(xe + 1)

≤
∑

e∈E(s′)∩E(si)

pe +
∑

e∈E(s′)\E(si)

pe

=
∑

e∈E(s′)

pe

≤
∑

e∈E(s∗)

pe

≤ costsc(s
∗).

The first and last inequalities come from properties (3’)

and (2’) of our generalized cost-sharing scheme, respec-

tively. Thus, agent i can pay lower cost by deviating to

this path. This contradicts that the strategy profile s

is a Nash equilibrium. Thus, pj(s) ≤ costsc(s
∗) for any

agent j.

By Lemma 2, we can see that the total cost of the

agents in a Nash equilibrium is at most n · costsc(s∗),
which implies the following.

Lemma 3. In CSCSG (∆,F∗) on SP graphs, PoAsc

is at most n.

As for the lower bound of PoAsc, Anshelevich et al.

gave an example of uncapacitated cost-sharing connec-

tion games on parallel-link graphs where PoAsc is n [1].

The example is a game of n agents on a parallel-link

graph consisting of two vertices and two directed edges

whose costs are defined by 1 and n, respectively. Since

a CSCSG such that the capacity of each edge is n is

equivalent to an uncapacitated cost-sharing connection

game, we obtain the same lower bound for CSCSG.

Lemma 4. There exists a CSCSG (∆, Ford) where

PoAsc is n even on parallel-link graphs.

By Lemmas 3 and 4, we obtain Theorem 2.

Theorem 2. For any CSCSG (∆,F∗), PoAsc is at

most n. Furthermore, there exists a CSCSG with

PoAsc = n on parallel-link graphs.

3.2 Price of Stability (PoS)

We show that PoSsc in (∆,F∗) on SP graphs is at

most n and it is tight.

Lemma 5. For any CSCSG (∆,F∗), PoSsc is at most

n.

Proof. Let s∗ be an optimal strategy profile under

sum-cost. Consider agents repeatedly deviate from s∗

to reduce their costs. Eventually, this procedure results

in a Nash equilibrium s by Proposition 1.

Recall that the change Φ(s)− Φ(s′j , s−j) from s to a

new strategy profile (s′j , s−j) equals the change of the

cost of agent j [11]. Thus, Φ(s) ≤ Φ(s∗) holds.

By property (2’) of our generalized cost-sharing

scheme, for any edge e ∈ E and strategy profile s,∑xe(s)
x=1 fe(x) ≤ npe holds. Then we transform the po-

tential function Φ(s∗) for strategy profile s∗ as follows:

Φ(s∗) =
∑
e∈E

xe(s
∗)∑

x=1

fe(x) =
∑

e∈E(s∗)

xe(s
∗)∑

x=1

fe(x)

≤
∑

e∈E(s∗)

npe ≤ n · costsc(s∗). (1)

Because costsc(s) ≤ Φ(s) holds, we have costsc(s) ≤
Φ(s) ≤ Φ(s∗) ≤ n · costsc(s

∗). Therefore,

PoSsc(∆,F∗) ≤ n · costsc(s∗)/costsc(s∗) = n.

Lemma 6. There exists a CSCSG (∆,F∗) with

PoSsc = n on parallel-link graphs.

Proof. Consider the following CSCSG (∆, F ) with n

agents on the parallel-rink graph with n + 1 edges

e0, . . . , en, illustrated in Figure 2. Let δ be a posi-

tive constant where 0 < δ < 1/n. The function g(x)

is defined as g(x) = δ(−n + x − 1) + 1. The cost and

the capacity of edge ei are g(i) and 1, respectively, for

1 ≤ i ≤ n−1. Also, the cost and the capacity of edge en

is 1+ ϵ and n, respectively. Finally, we define the cost-

sharing function of edge e as fe(x) = (−δx+ δ + 1)pe.

Note that fe satisfies fe(1) = pe and fe(x) ≥ pe/x for

0 < δ < 1/n, and thus fe’s belong to F∗.
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t

(g(n− 1), 1)(g(n− 2), 1) (g(0), 1) (1 + ε, n)

s

t

· · ·

Figure 2. A CSCSG (∆,F∗) with PoSsc = n on a parallel-link.
The cost and capacity of edge e is denoted by (pe, ce).

Let s∗ be a strategy profile where every agent uses

edge en. The sum-cost of s∗ is costsc(s
∗) = (−δn+ δ+

1)(1 + ϵ).

Next, let s be a strategy profile where agent i uses

edge ei−1. We show that strategy profile s is a unique

Nash equilibrium. Suppose that n− k agents use edge

en and k agents use some edges in {e0, . . . , en−1}. Then
the cost of en is as follows: fen(n− k) = (−δ(n− k) +

δ+1)(1+ ϵ) = (δ(−n+ k+1)+1)(1+ ϵ) = g(k)(1+ ϵ).

Note that f(n) = g(0)(1 + ϵ). Therefore, for any 0 ≤
k ≤ n− 1, there is an agent that moves from en to an

edge in {e0, . . . , en−1. Because the capacity of each ei

for 0 ≤ i ≤ n− 1 is 1, s is a unique Nash equilibrium.

The sum-cost in strategy profile s is as follows:

costsc(s) =

n−1∑
k=0

g(k) =

n−1∑
k=0

(δ(−n+ k − 1) + 1)

= δ

(
−n2 +

1

2
n(n− 1)− n

)
+ n

= −δ

2

(
n2 + 3n

)
+ n.

Set δ = 1/n3. Then,

PoSsc(∆,F∗) ≥ costsc(s)

costsc(s∗)
=

− δ
2

(
n2 + 3n

)
+ n

(−δn+ δ + 1)(1 + ϵ)

=
− 1

2

(
1
n + 3

n2

)
+ n

(− 1
n2 + 1

n3 + 1)(1 + ϵ)
.

When n is arbitrary large and ϵ is arbitrary small,

PoSsc(∆,F∗) becomes n.

Theorem 3. For any CSCSG (∆,F∗) on SP graphs,

PoSsc is at most n. Furthermore, there is a CSCSG

(∆,F∗) with PoSsc = n.

4 Capacitated Cost-Sharing Connec-
tion Games under Max-Cost Crite-
rion

In this section, we give the tight bounds of PoA and

PoS of CSCSG under max-cost.

4.1 Price of Anarchy (PoA)

Feldman et al. show that PoAmc is unbounded on

undirected graphs [8]. As with the sum-cost case, we

can also show that PoAmc is unbounded on a directed

graph by using the transformation in [6].

4.1.1 Directed acyclic graphs

We show that PoAmc of an SCSCG (∆, Ford) is un-

bounded even on DAGs.

Theorem 4. There exists an SCSCG (∆, Ford) on

DAGs such that PoAmc is unbounded.

Proof. We show that the PoAmc of the SCSCG illus-

trated in Figure 1 is unbounded. The strategy is the

same as the sum-cost case. The optimal cost is 3x, and

the maximum cost of all Nash equilibrium is 2x + y.

Thus, we have PoAmc = (2x + y)/3x = 2/3 + y/3x.

Because x and y are arbitrary where x < y, PoAmc can

be unbounded.

4.1.2 SP graphs

For any CSCSG (∆,F∗), we show that PoAmc on SP

graph is at most n.

Lemma 7. For any CSCSG (∆,F∗) on SP graphs,

PoAmc is at most n.

Proof. Let s∗ be an optimal strategy profile under

max-cost. Then for any Nash equilibrium s, it holds

that costmc(s) ≤ costsc(s
∗) ≤ n · costmc(s

∗). The first

inequality holds by Lemma 2. By the definition of

max-cost, the second inequality holds. Thus, we have

PoAmc(∆,F∗) ≤ n · costmc(s
∗)/costmc(s

∗) = n.

On the other hand, we observe that the PoAmc of

the game used in Lemma 4 is n. Therefore, we obtain

Theorem 5 as follows.

Theorem 5. For any CSCSG (∆,F∗) on SP graphs,

PoAmc is at most n. Furthermore, there is a CSCSG

with PoAmc = n even on parallel-link graphs.

4.2 Price of Stability (PoS)

For the lower bound, Feldman and Ron showed that

PoSmc is n on undirected parallel-link graphs. By ori-

enting all the edges from a vertex to the other vertex

in an undirected parallel-link graph, we can see that

PoSmc is n on a directed parallel-link graph.

In the following, we show that PoSmc is at most n.



第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-B 8

Lemma 8. For any CSCSG (∆,F∗), PoSmc is at most

n.

Proof. The outline of the proof follows that of [6, The-

orem 3], though we extend it to our generalized setting.

Let s∗ be an optimal strategy profile under max-cost.

As with Lemma 5, consider agents repeatedly deviate

from s∗ to reduce their costs. By Proposition 1, we

obtain a Nash equilibrium s in the end of the devia-

tions. Without loss of generality, we can scale the edge

costs so that costsc(s
∗) = n, and as the result, we have

costmc(s
∗) ≥ 1.

If costmc(s) ≤ n, then we obtain PoSmc(∆,F∗) ≤ n.

Otherwise, the following inequality holds:

n < costmc(s) ≤ costsc(s) ≤ Φ(s) < Φ(s∗).

Note that the third inequality comes from that F∗’s

functions are non-increasing and the forth inequality

comes from the definition of the potential function. For

some α, β, δ > 0, let Φ(s∗) = n+ α, costmc(s) = n+ β,

and Φ(s) = Φ(s∗)− δ. Note that 0 < β ≤ α− δ.

Let s−i be the strategy profile of n− 1 agents except

for agent i who pays costmc(s). Because the change of

the potential function equals the change of the cost of

an agent who deviates, we have:

Φ(s−i) = Φ(s)− costmc(s) = (n+ α− δ)− (n+ β)

= α− β − δ.

We construct a strategy profile s′ of n agents by

combining s∗ and s−i as follows. We define Ḡ =

(V, Ē) where Ē = E(s∗) ∪ E(s−i) and c̄(e) =

max{xe(s
∗), xe(s−i)} as a directed and capacitated

graph. Now, we have n − 1 paths in the strategy pro-

file s−i and n paths in the strategy profile s∗. Here,

we regard the strategy profile s−i as s-t flow and let

Ḡs−i
be the residual network of Ḡ for s−i. Since Ḡ ad-

mits flow with size n while the size of flow constructed

from s−i is n − 1, there is an augmenting s-t path s′

in Ḡs−i
. By adding the augmenting path in Ḡs−i

to

s−i, we construct the strategy profile s′ = (s−i, s
′). We

notice that the addition increases the number of agents

that use e ∈ Ē(s′) by at most 1 and xe(s
∗) > 0 for

every edge e ∈ Ē(s′).

Let p(s′) =
∑

e∈Ē(s′) pe be the cost of path s′. By

agent i choosing s′, the potential increases by at most

pe for each e ∈ Ē(s′) due to property (3’) of F∗, which

implies that the total increase is at most p(s′); we have

Φ(s′) ≤ Φ(s−i) + p(s′). Moreover, since xe(s
∗) > 0 for

every edge e ∈ Ē(s′), we obtain p(s′) =
∑

e∈Ē(s′) pe ≤

costsc(s
∗) = n by property (2’) of F∗. Hence, we have

Φ(s′) ≤ (α− β − δ) + n = Φ(s)− β < Φ(s).

Let s′′ be a Nash equilibrium obtained from s′ by the

deviations of agents. We then have Φ(s′′) ≤ Φ(s′) <

Φ(s).

If costmc(s
′′) ≤ n, then PoSmc(∆,F∗) ≤ n due to

costmc(s
∗) ≥ 1. Thus, we are done. Otherwise, we

repeat the above procedure starting from s′′ instead

of s. For each time, if we obtain a Nash equilibrium

with max-cost higher than n, that Nash equilibrium has

strictly less potential than the previous Nash equilib-

rium. Since the number of strategy profiles is finite, we

eventually obtain a Nash equilibrium whose max-cost

is at most n. Therefore, PoSmc(∆,F∗) ≤ n holds.

Theorem 6. For any CSCSG (∆,F∗), PoSmc is at

most n, and it is tight.

5 Asymmetric Games

In this section, we consider the capacitated asym-

metric cost-sharing connection game (CACSG), where

agents have different source and sink nodes.

Because the CACSG is a generalization of CSCSG,

the lower bound of CSCSG holds for the CACSG.

Theorem 7. For any CACSG (∆,F∗), PoAsc and

PoAmc are unbounded even on DAGs.

As for the sum-cost, it is easily seen that Lemma 5

holds for the asymmetric case.

Theorem 8. For any CACSG (∆,F∗), PoSsc is at

most n and it is tight.

For the max-cost, we show that PoSmc is at most n2.

Theorem 9. For any CACSG (∆,F∗), PoSmc is at

most n2.

Proof. Let s∗ be an optimal strategy profile under

max-cost and s be a Nash equilibrium obtained from

s∗ by the deviations of agents. By the definition

of the potential function, Φ(s) ≤ Φ(s∗) holds. By

Eq. (1) in Lemma 5, Φ(s∗) ≤ n · costsc(s∗) holds.

Because costsc(s
∗)/n ≤ costmc(s

∗), we have Φ(s) ≤
n2 · costmc(s

∗). Finally, since costmc(s) ≤ Φ(s),

costmc(s) ≤ n2 · costmc(s
∗) holds. Thus, we have:

PoSmc ≤ n2 · costmc(s
∗)/costmc(s

∗) = n2.

For the lower bound of PoSmc, Erlebach and Radoja

showed that there is a CACSG (∆, Ford) with PoSmc =

Ω(n log n) [6]. However, there is a gap between n log n

and n2 with respect to PoSmc.
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6 Conclusion

In this paper, we studied the capacitated symmetric

/ asymmetric cost-sharing connection game (CSCSG,

CACSG) under the generalized cost-sharing scheme

that models more realistic scenarios such as the situ-

ation where the overhead costs arise. In particular, we

investigated the games from the viewpoint of PoA and

PoS under two types of social costs: sum-cost and max-

cost. All the bounds that we give for CSCSG are tight.

In spite of the generalization, all the bounds under the

ordinary cost-sharing function still hold with one ex-

ception; for PoS of sum-cost, we found a substantial

difference between the ordinary cost-sharing function

and the generalized scheme, where the former is log n

and the latter is n.

In this paper, we mainly focused on CSCSG. For the

asymmetric games, however, there is still a gap for PoS

under max-cost. Thus, filling the gap is an interesting

open problem. Moreover, it would be worth to con-

sider some other concepts of stability, such as Strong

Price of Anarchy (SPoA) and Strong Price of Stability

(SPoS) to CSCSG and CACSG under the generalized

cost-sharing scheme.
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