
1

L(p, 1)ラベリングのための固定パラメータアルゴリズム ∗

川井一馬 †1, 土中哲秀 ‡2, 小野廣隆 §1

1 名古屋大学
2 中央大学

Abstract

Given a graph, an L(p, 1)-labeling of the graph is an assignment f from the vertex set to the set of nonnegative

integers such that for any pair of vertices (u, v), |f(u)−f(v)| ≥ p if u and v are adjacent, and f(u) ̸= f(v) if u and v

are at distance 2. The L(p, 1)-labeling problem is to minimize the span of f (i.e.,maxu∈V (f(u))−minu∈V (f(u))+

1). It is known to be NP-hard even for graphs of maximum degree 3 or graphs with tree-width 2, whereas it is

fixed-parameter tractable with respect to vertex cover number. Since vertex cover number is a kind of the strongest

parameter, there is a large gap between tractability and intractability from the viewpoint of parameterization. To

fill up the gap, in this paper, we propose new fixed-parameter algorithms for L(p, 1)-Labeling by the twin cover

number plus the maximum clique size and by the tree-width plus the maximum degree. These algorithms reduce

the gap in terms of several combinations of parameters.

1 Introduction

Let G be an undirected graph, and p and q be con-

stant positive integers. An L(p, q)-labeling of a graph

G is an assignment f from the vertex set V (G) to the

set of nonnegative integers such that |f(x) − f(y)| ≥ p

if x and y are adjacent and |f(x) − f(y)| ≥ q if x and

y are at distance 2, for all x and y in V (G). We call

the former distance-1 condition and the latter distance-

2 condition. A k-L(p, q)-labeling is an L(p, q)-labeling

f : V (G) → {0, . . . , k}, where the labels start from

0 for conventional reasons. The k-L(p, q)-Labeling

problem determines whether given G has a k-L(p, q)-

labeling, or not, and the L(p, q)-Labeling problem

asks the minimum k among all possible assignments.

The minimum value k is called the L(p, q)-labeling

number, and we denote it by λp,q(G), or simply λp,q.

Notice that we can use k + 1 different labels when

λp,q(G) = k.

The original notion of L(p, q)-labeling can be seen

in the context of frequency assignment. Suppose that

vertices in a graph represent wireless devices. The pres-

ence/absence of edges indicates the presence/absence of

direct communication between the devices. If two de-

∗ This work was partially supported by JSPS KAKENHI
Grant Numbers JP17K19960, 17H01698, 19K21537. A full
version of this paper is available in [22].

† kawai.kazuma@g.mbox.nagoya-u.ac.jp
‡ hanaka.91t@g.chuo-u.ac.jp
§ ono@nagoya-u.jp

vices are very close, that is, they are connected in the

graph, they need to use sufficiently different frequen-

cies, that is, their frequencies should be apart at least

p. If two devices are not very but still close, that is,

they are at distance 2 in the graph, their frequencies

should be apart at least q (≤ p). Thus, the setting

of q = 1 as one unit and p ≥ q = 1 is considered

natural and interesting, and the minimization of used

range becomes the issue. Note that L(1, 1)-labeling on

G is equivalent to the ordinary coloring on the square

of G. From these, L(p, 1)-Labeling for p > 1 is in-

tensively and extensively studied among several possi-

ble settings of p. In particular, L(2, 1)-Labeling is

considered the most important. A reason is that it is

natural and suitable as a basic step to consider, and

another reason is that the computational complexity

(e.g., hardness or polynomial-time solvability) tends to

be inherited from L(2, 1) to L(p, 1) of p > 2; for exam-

ple, if L(2, 1)-Labeling is NP-hard in a setting, the

hardness proof could be modified to L(p, 1)-Labeling

in the same setting. Designing a polynomial time al-

gorithm is also. We can find various related results in

surveys by Calamoneri [5]. See also [24] for algorithmic

results.

The notion of L(p, q)-Labeling firstly appeared

in [20] and [30]. Griggs and Yeh formally introduced the

L(2, 1)-Labeling problem [19]. They also show that

L(2, 1)-Labeling is NP-hard in general. Furthermore,

L(2, 1)-Labeling is shown to be NP-hard even for pla-

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 2

nar graphs, bipartite graphs, chordal graphs [3], graphs

with diameter of 2 [19] and graphs with tree-width

2 [12]. Moreover, for every k ≥ 4, k-L(2, 1)-Labeling,

that is the decision version of L(2, 1)-Labeling is NP-

complete for general graphs [14] and even for pla-

nar graphs [8]. These results imply that k-L(2, 1)-

Labeling is NP-complete for every ∆ ≥ 3, where

∆ denotes the maximum degree. On the other hand,

L(2, 1)-Labeling can be solved in polynomial time for

paths, cycles, wheels [19], but these are rather triv-

ial. For non-trivial graph classes, only a few graph

classes (e.g., co-graphs [6]) are known to be solvable in

polynomial time. In particular, Griggs and Yeh con-

jectured that L(2, 1)-Labeling on trees was NP-hard,

which was later disproved (under P ̸=NP) by the exis-

tence of an O(n5.5)-time algorithm [6]. It is now known

that L(p, 1)-Labeling on trees can be solved in linear

time [23].

From these results, we roughly understand the

boundary between polynomial-time solvability and NP-

hardness concerning graph classes, and studies are go-

ing to fixed-parameter (in)tractability. For a problem

A with input size n and parameter t, A is called fixed-

parameter tractable with respect to t if there is an al-

gorithm whose running time is g(t)nO(1), where g is a

certain function. Such an algorithm is called a fixed-

parameter algorithm. If problem A is NP-hard for a

constant value of t, there is no fixed-parameter algo-

rithm unless P=NP; we say A is paraNP-hard. Un-

fortunately, L(2, 1)-Labeling is already shown to be

paraNP-hard for several parameters such as λ2,1, max-

imum degree and tree-width as seen above. For positive

results, it is fixed-parameter tractable with respect to

vertex cover number [13] or neighborhood diversity [11].

Note that vertex cover number is a stronger parameter

than tree-width, which means that if the vertex cover

number is bounded, the tree-width is also. There is

still a gap on fixed-parameter (in)tractability between

them. For such a situation, two approaches can be

taken. One is to finely classify intermediate parame-

ters and see fixed-parameter (in)tractability for them,

and the other is to combine two or more parameters and

see fixed-parameter (in)tractability under the combina-

tions. In this paper, we take the latter approach.

1.1 Our contribution

In this paper, we present algorithms with combined

parameters. The parameters that we focus on are

clique-width (cw), tree-width (tw), maximum clique

size (ω), maximum degree (∆) and twin cover num-

ber (tc). These are selected in connection with afore-

mentioned parameters, λp,1, maximum degree and tree-

width. Maximum clique size and clique-width are well

used parameters weaker than tree-width. Maximum de-

gree itself is a considered parameter, which is strongly

related to λp,q(G). In fact, it is easy to see that

λp,1 ≥ ∆ + p − 1, and λp,1 ≤ ∆2 + (p − 1)∆ − 2 [18].

Thus, λp,1 and ∆ are parameters equivalent in terms

of fixed-parameter (in)tractability. Twin cover num-

ber is picked up as a parameter that is moderately

weaker than vertex cover number but stronger than

clique-width and is also incomparable to neighborhood

diversity.

These parameters are ordered in the following two

ways: (1) (vc ⪰){tw, tc} ⪰ cw and (2) (λp,1 ≃)∆ ⪰ ω.

Here, for graph parameters α and β, α ⪰ β rep-

resents that there is a positive function g such that

g(α(G)) ≥ β(G) holds for any G, and we denote α ≃ β

if α ⪰ β and β ⪰ α. For combined parameters of

one from (1) and another from (2), we design fixed-

parameter algorithms. Note that some combination

yields essentially one parameter. For example, tw + ω

is equivalent to tw, because tw ≥ ω − 1 holds. The

obtained results are listed below:

• L(p, 1)-Labeling is fixed-parameter tractable

(FPT, for short) when parameterized by cw+∆ for

p ≥ 1. The proof is based on the monadic second

order logic (MSO1) and the Courcelle’s theorem,

which implies that the exponent part of the time

complexity could be quite large.

• L(p, 1)-Labeling can be solved in time ∆O(tw∆)n

for p ≥ 1. Note that the FPT result itself follows

from the above FPT result with respect to cw+ ∆.

We here give an explicit algorithm. This result

also implies that L(p, 1)-Labeling is FPT when

parameterized by band-width.

• L(p, 1)-Labeling is FPT when parameterized by

tc + ω. Since tc + ω ≤ vc + 1 for any graph,

it generalizes the fixed-parameter tractability with

respect to vertex cover number in [13].

• L(1, 1)-Labeling is FPT when parameterized by

only twin cover number. This also yields a fixed-

parameter p-approximation algorithm for L(p, 1)-

Labeling with respect to twin cover number.

Figure 1 illustrates the detailed relationship between

graph parameters and the parameterized complexity of

L(p, 1)-Labeling.

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 3

cw

tw

vc

mw

nd

paraNP-hard

FPT

tc

𝐜𝐰 + 𝚫

Δ

fes

fvs

𝐭𝐰 + 𝚫

𝐛𝐰

𝐦𝐥

𝜔

𝐭𝐜 +𝝎

XP

?

Figure 1. The relationship between graph parameters
and the parameterized complexity of L(p, 1)-Labeling. Let
cw, ω,∆, mw, nd, tc, tw, fvs, fes, bw, ml, and vc denote clique-
width, maximum clique size, modular-width, neighborhood di-
versity, twin cover number, tree-width, feedback vertex set num-
ber, feedback edge set number, band-width, max leaf number,
and vertex cover number, respectively. Connections between two
parameters imply that the upper is bounded by a function of
the lower. The underlines for parameters indicate that they are
obtained in this paper.

1.2 Related work

As mentioned above, L(p, 1)-Labeling is NP-hard

even on graphs of tree-width 2 [12]. Using stronger

parameters than tree-width, Fiala et al. showed that

L(p, 1)-Labeling is fixed-parameter tractable when

parameterized by vertex cover [13] and neighborhood

diversity [10]. Moreover, Fiala, Kloks and Kratochv́ıl

showed that the problem is XP when parameterized

by feedback edge set number [14]. For approxima-

tion, it is NP-hard to approximate L(p, 1)-Labeling

within a factor of n0.5−ε for any ε > 0, whereas it can

be approximated within O(n(log log n)2/ log3 n) [21].

For L(1, 1)-Labeling, it can be solved in time

O(∆28(tw+1)+1

n+ n3), and hence it is XP by tree-width

[32]. This result is tight in the sense of fixed-parameter

(in)tractability, because it is W[1]-hard with respect

to tree-width [13]. Moreover, it can be solved in time

O(cw326cwn2
4cw+22cw+1) [31].

Apart from L(p, 1)-Labeling, twin cover number is

a relatively new graph parameter, which is introduced

in [15] as a stronger parameter than vertex cover num-

ber. In the same paper, many problems are shown

to be FPT when parameterized by twin cover num-

ber, and it is getting to be a standard parameter (e.g.,

[1, 9, 16, 25, 26]). Recently, for Imbalance, which is

one of graph layout problems, a parameterized algo-

rithm is presented [28]. It is interesting that they also

adopt twin cover number plus maximum clique size as

the parameters.

2 Preliminaries

In this paper, we use the standard graph notations.

Suppose that G = (V,E) is a simple and connected

graph with the vertex set V and the edge set E. We

sometimes use V (G) or E(G) instead of V or E re-

specively, to specify graph G. For G = (V,E), we de-

note the numbers of vertices and edges by n = |V | and

m = |E|, respectively. For V ′ ⊆ V , we denote by G[V ′]

the subgraph of G induced by V ′. For two vertices u

and v, the distance distG(u, v) is defined by the length

of a shortest path between u and v where the length of a

path is the number of edges of it. We denote the closed

neighbourhood and the open neighbourhood of a vertex

v by NG[v] and NG(v), respectively. For a set S ⊆ V ,

let NG(S) =
∪

v∈S NG(v) and NG[S] =
∪

v∈S NG[v].

The degree of v is denoted by dG(v) = |NG(v)|. The

maximum degree of G is denoted by ∆(G). For sim-

plicity, we sometimes omit the subscript G.

The k-th power Gk = (V,Ek) of a graph G = (V,E)

is a graph such that the set of vertices is V and there

is an edge (u, v) in Ek if and only if there is a path of

length at most k between u and v inG [4]. In particular,

G2 is called the square of G.

In the following, we introduce several graph parame-

ters.

Definition 1 (Tree Decomposition). A tree decom-

position of a graph G = (V,E) is defined as a pair

⟨X , T ⟩, where T is a tree with node set I(T) and

X = {Xi | i ∈ I(T)} is a collection of subsets, called

bags, of V such that:

1. (vertex condition)
∪

i∈I(T)Xi = V ;

2. (edge condition) For every {u, v} ∈ E, there exists

an i ∈ I(T) such that {u, v} ⊆ Xi;

3. (coherence property) For every u ∈ V , Iu = {i ∈
I(T) | u ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition is defined as

maxi∈I |Xi| − 1 and the tree-width of G, denoted by

tw(G), is defined as the minimum width among all pos-

sible tree decompositions of G.

Two vertices u, v are called twins if both u and v

have the same neighbors. Moreover, if twins u, v have

edge {u, v}, they are called true twins and the edge is

called a twin edge. Then a twin cover of G is defined

as follows.

Definition 2 (Twin Cover, [15]). A set of vertices X

is a twin cover of G if every edge {u, v} ∈ E satis-

fies either (1) u ∈ X or v ∈ X, or (2) u, v are true

twins. The twin cover number of G, denoted by tc(G),

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 4

is defined as the minimum size of twin covers in G.

An important observation is that the complement V \
X of a twin cover X induces disjoint cliques. Moreover,

for each clique Z of G[V \X], N(u) ∩X = N(v) ∩X
for every u, v ∈ Z [15].

A vertex cover X is the set of vertices such that for

every edge, at least one endpoint is in X. The vertex

cover number of G, denoted by vc(G), is defined as the

minimum size of vertex covers in G. Since every vertex

cover of G is also a twin cover of G, tc(G) ≤ vc(G)

holds. Also, for any graph G, we have tc(G) +ω(G) ≤
vc(G) + 1.

3 Parameterization by cw+∆

As L(p, 1)-Labeling is paraNP-hard for tree-width,

so is for clique-width. In this section, as a com-

plement, we show that L(p, 1)-Labeling (actually,

L(p, q)-Labeling for any constant p and q) is fixed-

parameter tractable when parameterized by cw + ∆.

To show this, we give a one-sorted monadic-

second order logic (MSO1) representation of k-L(p, q)-

Labeling. We first define the following formula

dist=2(u,w), which is true if the distance between u

and w is exactly 2:

dist=2(u,w) :=(u ̸= w) ∧ ¬adj(u,w)

∧ (∃v ∈ V : (u ̸= v)

∧ (v ̸= w) ∧ (adj(u, v) ∧ adj(v, w)).

Then the formula φk such that G |= ϕk if and only if
(G, k) is a yes instance of L(p, q)-Labeling is defined
as follows:

φk :=∃V0, . . . , Vk :

∀v :
∨

0≤i≤k

(v ∈ Vi ∧
∧

0≤j ̸=i≤k

v /∈ Vj)


∧ (∀u, v : adj(u, v) ⇒

∨
0≤i≤k

(u ∈ Vi ∧ (
∧

i−p+1≤j≤i+p−1

v /∈ Vj)))

∧

∀u, v : (dist=2(u, v)) ⇒
∨

0≤i≤k

(u ∈ Vi ∧ (
∧

i−q+1≤j≤i+q−1

v /∈ Vj))

 .

For a graph G of clique-width at most cw and for an

MSO1 formula ψ, it can be checked whether G |= ψ

in time O(g(|ψ|, cw) · n3), where g is some computable

function [7, 29]. Because the length of MSO1 formula

φk depends on k, p, and q, k-L(p, q)-Labeling is fixed-

parameter tractable when parameterized by k + cw.

Thus, we obtain the following theorem.

Theorem 1. For any fixed p, q, L(p, q)-Labeling is

fixed-parameter tractable when parameterized by λp,q +

cw.

As for the labeling number, since the degree of G2 is

∆2, λ1,1(G) ≤ ∆(G)2 holds. This and λcp,cq = cλp,q

([17]) imply that λp,q ≤ max{p, q}∆2 holds. For q = 1,

a better bound λp,1 ≤ ∆2 + (p− 1)∆− 2 is known [18].

Thus we have the following corollary.

Corollary 1. For any positive constant p and q,

L(p, q)-Labeling is fixed-parameter tractable when pa-

rameterized by ∆ + cw.

4 Parameterization by tw+∆

In previous section, we show that L(p, 1)-Labeling

is fixed-parameter tractable when parameterized by

cw + ∆. However, it is shown by using the MSO1 rep-

resentation and the Courcelle’s theorem. Thus, the ex-

ponent part of the running time of the algorithm might

be quite large. In this section, we give an explicit fixed-

parameter algorithm for L(p, 1)-Labeling parameter-

ized by tw + ∆. The running time is ∆O(tw∆)n.

In the algorithm, we first construct the square G2

of G and then compute L(p, 1)-Labeling of G by

dynamic programming on a nice tree decomposition

⟨X ′, T ′⟩ of G2. Actually, the algorithm runs for L(p, q)-

Labeling though the running time depends on λ. One

can obtain the square of G2 in time O(m∆(G)) =

O(∆(G)2n). We then prove the following lemma.

Lemma 1. Given a tree decomposition of a graph G

of width t with ℓ bags, one can construct a tree decom-

position of G2 of width at most (t+ 1)∆(G) + t with ℓ

bags in time O(t∆(G)ℓ).

Proof. We are given a tree decomposition ⟨X , T ⟩ of G

of width t. Let X ′
i = Xi ∪ N(Xi) and X ′ = {X ′

i | i ∈
I(T)} be the set of bags. We here define ⟨X ′, T ′⟩ as a

tree decomposition of G2, where T ′ and T are identical;

T and T ′ has the same node set and the same structure,

where each i ∈ I(T ′) corresponds to i ∈ I(T). In the

following, we denote ⟨X ′, T ⟩ instead of ⟨X ′, T ′⟩.
We can see that ⟨X ′, T ⟩ is really a tree decompo-

sition of G2 with width (t + 1)∆(G) + t. It satis-

fies the properties of tree decomposition indeed: Since∪
i∈I X

′
i =

∪
i∈I(Xi ∪ N(Xi)) = V (G) = V (G2), the

vertex condition is satisfied. We next see edge con-

dition. For each e ∈ E, there is Xi containing e, so

e ∈ X ′
i. For each {u, v} ∈ E2 \ E, there is a ver-

tex v′(̸= u, v) such that {u, v′} ∈ E and {v′, v} ∈ E.

Thus there is Xi satisfying {u, v′} ⊆ Xi, which implies

{u, v} ⊆ Xi ∪ {v} ⊆ Xi ∪ N({v′}) ⊆ X ′
i. These show

that the edge condition is satisfied.

Finally, we check coherent property: we show that

for every u ∈ V , I ′u = {i ∈ I(T) | u ∈ X ′
i} induces a

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 5

connected subtree of T . Note that

I ′u ={i ∈ I(T) | u ∈ X ′
i} = {i ∈ I(T) | u ∈ Xi}

∪
∪

v∈N(u)

{i ∈ I(T) | v ∈ Xi}.

Here, the subgraph Tv of T induced by {i ∈ I(T) |
u ∈ Xi} is connected by the coherent property of

⟨X , T ⟩. Also for each v ∈ N(u), the subgraph Tv of

T induced by {i ∈ I(T) | v ∈ Xi} is connected. By

{u, v} ∈ E, the edge condition of ⟨X , T ⟩ implies that

there exists a bag Xj containing both u and v. Since

Tu and Tv has a common node j, the subgraph of T

induced by {i ∈ I(T) | u ∈ Xi} ∪ {i ∈ I(T) | v ∈ Xi}
is also connected, which leads that the subgraph of T

induced by I ′u is also connected.

Hence, ⟨X ′, T ⟩ is a tree decomposition of G2. Since

the size of bag X ′
i is |X ′

i| = |Xi ∪ N(Xi)| =

|
∪

u∈Xi
N [u]| ≤ (t+1)(∆(G)+1), the width is at most

(t+ 1)(∆(G) + 1)− 1 = (t+ 1)∆(G) + t. The construc-

tion of ⟨X ′, T ⟩ is done by preparing each X ′
i, which

takes O(t∆(G)) steps for each i. Thus it can be done

in time O(t∆(G)ℓ) in total.

Corollary 2. tw(G2) ≤ (tw(G) + 1)∆(G) + tw(G)

holds.

By the above lemma, the tree-width of G2 is bounded

if tw(G) and ∆(G) are bounded. Thus we can design a

dynamic programming algorithm on a nice tree decom-

position of G2, although we omit the detail.

Lemma 2. Given a nice tree decomposition of G2 of

width at most t, one can compute k-L(p, q)-Labeling

on G in time O((k + 1)t+1t2n).

Here, one can construct a tree decomposition ⟨X , T ⟩
of G of width 5tw(G) + 4 with O(n) bags in time

2O(tw(G))n [2]. By Lemma 1, we can obtain a tree

decomposition ⟨X ′, T ⟩ of G2 of width (5tw(G) + 4 +

1)∆(G) + 5tw(G) + 4 = O(tw(G)∆(G)) from ⟨X , T ⟩
in time O(tw(G)∆(G)n). By Lemma 2 and λp,q ≤
max{p, q}∆2, we have the following theorem .

Theorem 2. For any positive constant p and q,

L(p, q)-Labeling can be solved in time ∆O(tw∆)n.

Since tw(G) ≤ bw(G) and ∆(G) ≤ 2bw(G), we have

the following corollary.

Corollary 3. For any positive constant p and q,

L(p, q)-Labeling is fixed-parameter tractable when pa-

rameterized by band-width.

5 Parameterization by twin cover num-

ber

5.1 L(p, 1)-Labeling parameterized by tc + ω

We design a fixed-parameter algorithm for L(p, 1)-

Labeling with respect to tc + ω. Notice that for a

twin cover X of G = (V,E), each of the connected

components of G[V \X] forms a clique. We categorize

vertices in V \ X with respect to the neighbors in X.

Let T1, T2, . . . , Ts be the sets of vertices having common

neighbors in X, called types of vertices in V \X, where

s is the number of types. Moreover, we say that a

clique C ⊆ V \ X is of type Ti if C ⊆ Ti. Note that

V \X =
∪s

i=1 Ti. Let ni = |Ti| and ωi be the maximum

clique size in Ti.

We first see a general property about cliques with a

common neighbor: Suppose that a graph G consists of

only cliques and common neighbors Y of all the ver-

tices in the cliques. That is, all the vertices are within

distance 2. Also suppose that vertices in Y has some

labels a1, a2, . . . , a|Y | and L is a set of labels that are at

least p apart from a1, a2, . . . , a|Y |. Then the following

lemma holds.

Lemma 3. Suppose that a graph G and a label set L

are defined as above, and let C1, C2, . . . , Ch be the set

of the cliques, in the descending order of the size. If

|L| ≥
∑

j |Cj | and
∑

j |Cj | ≥ p|C1| hold, there exists

an L(p, 1)-labeling of C1, . . . , Ch using only labels in L.

Proof. Let n′ =
∑

j |Cj | and ω = |C1|. The state-

ment of the lemma is rewritten as “if |L| ≥ n′ and

n′ ≥ pω, all the cliques can be properly labeled

with L”. Let us assume L = {l1, l2, . . . , ln′}. Since

we can use distinct labels for vertices in C1, C2, . . . ,

Ch, only the distance-1 condition inside of a same

clique matters. If n′ ≡ 1 (mod p), we label the

vertices in C1, C2, . . ., Cn′ in this order by using la-

bels in order of l1, lp+1, l2p+1, . . . , ln′ , l2, lp+2, l2p+2 . . .,

ln′−p+2, l3 . . . , lp, l2p, . . . ,

ln′−1. Note that the vertices in C1 are labeled

by l1, lp+1, . . . , lp(ω−1)+1 (note that pω ≤ n′). Since

the difference between lαp+i and l(α+1)p+i for each i

and α is at least p, the labeling for cliques does not

violate the distance-1 condition. We can choose similar

orderings for the other residuals.

Now we go back to the algorithm parameterized by

tc + ω. Given a twin cover X, we say that a k-

L(p, 1)-labeling is good for X if it uses only labels in

{0, 1, . . . , (2p−1)|X|−p}∪{k− (2p−1)|X|+p, . . . , k}

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 6

for X. The following lemma is also important. It can

be shown by repeatedly applying Lemma 3 though we

omit the detail.

Lemma 4. Let X be a twin cover in G such that each

Ti satisfies ωi ≤ ni/p. If G has a k-L(p, 1)-labeling,

then G also has a good k-L(p, 1)-labeling for X.

Thus, we consider to find a good L(p, 1)-labeling. Us-

ing the lemma, we show that L(p, 1)-Labeling is fixed-

parameter tractable with respect to tc + ω.

Theorem 3. L(p, 1)-Labeling is fixed-parameter

tractable when parameterized by tc + ω.

Proof. We present an algorithm to solve k-L(p, 1)-

Labeling instead of L(p, 1)-Labeling. We first com-

pute a minimum twin cover X in time O(1.2738tc +

tcn+m) [15]. For twin cover X, we define Ti’s. Then,

we define another twin cover of X ′ = X∪
∪

i:ωi>ni/p
Ti.

Since X is a twin cover, X ′ is also. The size of X ′ is at

most tc + 2tc · p · ω, because the number of types is at

most 2tc and the size of Ti joining X is at most p · ω.

Let tc′ = |X ′|.

We are now ready to present the core of the algo-

rithm. We classify an instance into two cases. If k

is small enough, we can apply a brute-force type al-

gorithm. Otherwise, we try to find a good k-L(p, 1)-

labeling.

(Case: k < 8ptc′) For each type Ti, the distance be-

tween two vertices in Ti is at most 2. Thus, the labels

of vertices in Ti must be different each other. Due to

k < 8ptc′, if |Ti| ≥ 8ptc′, we conclude that the in-

put is a no-instance. Otherwise, n = |X ′| +
∑

|Ti| ≤
tc′ + 8ptc′2tc holds, because the number of Ti’s is at

most 2tc. Thus we check all the possible labelings in

time O((8ptc′)8ptc
′2tc).

(Case: k ≥ 8ptc′) Let C0, C1, . . . Ct be the family of all

possible set systems on {T1, . . . , Ts} such that whenever

two distinct Tj and Tj′ are in Ci then N(Tj)∩N(Tj′) =

∅. Here, C0 is the empty set. These are introduced to

describe a set of Tj ’s that can use a same label. For

each Ci, we prepare a set Li of labels, which will be used

during the execution of the algorithm to represent the

set of labels that could be used for vertices in Tj ∈ Ci.
Note that L0, L1, . . . , Lt must be disjoint each other,

and a label in Li is used exactly once per Tj . We also

define L0 as the set of labels not used in V \X ′. Each

Li can be empty.

By Lemma 4, there is a good k-L(2, 1)-labeling

for X such that vertices in X only use labels in

{0, 1, . . . , 2p(tc′ − 1)− p}∪ {k− 2p(tc′ − 1) + p, . . . , k}
if the input is an yes-instance. Thus we try all

the possible partial labelings for X, each of which

uses only labels in {0, 1, . . . , 2p(tc′ − 1) − p} ∪ {k −
2p(tc′ − 1) + p, . . . , k}. Since the number of labels

is 2(2p(tc′ − 1) − p + 1) ≤ 4ptc′, there are at most

(4ptc′)tc
′

possible labelings of X. For each of them

we further try all the possible placement of labels in

{0, 1, . . . , 2p(tc′ − 1)− 1}∪ {k− 2p(tc′ − 1) + 1, . . . , k}
into L0, L1, . . . , Lt, which is a little wider than above.

The number of possible placements is at most t4ptc
′

due to the disjointness of Li’s. Therefore, the to-

tal possible nonisomorphic partial labelings is at most

(4ptc′)tc · t4ptc′ . Note that no vertex will be labeled by

a label in {0, 1, . . . , 2p(tc′−1)−1}∪{k−2p(tc′−1) +

1, . . . , k} hereafter. Thus we consider how we use labels

in {2p(tc′ − 1), . . . , k − 2p(tc′ − 1), . . . , k} for V \ X,

which does not yield any conflict with X.

We then formulate as Integer Linear Programming

how many labels should be placed in L0, L1, . . . , Lt for

one partial labeling using {0, 1, . . . , 2p(tc′ − 1) − p} ∪
{k−2p(tc′−1)+p, . . . , k}. For a fixed partial labeling,

let ai be the number of labels that have been already

assigned to Li there, and xi be a variable representing

the number of labels used in Li in the desired labeling.

The following is the ILP formulation.
x0 + · · · + xt ≤ k + 1

xi ≥ ai, for i ∈ {0, . . . , t}∑
i:Tj∈Ci

xi = |Tj |, for j ∈ {1, . . . , s}

The first constraint shows that the total number of la-

bels is at most k + 1. Note that the number of unused

labels is x0. The second one is for consistency to the

partial labeling. The last one, which is the most im-

portant, guarantees that every vertex in Tj can receive

a label; the number of usable labels is |{i | Tj ∈ Ci}|,
because a label in Li is used exactly once per Tj .

If the above ILP has a feasible solution, it is possible

to assign labels to all the vertices in V \X if we ignore

the distance-1 condition inside of each clique. Actually,

we can see that the information is sufficient to give

a proper k-L(p, 1)-labeling. At the beginning of the

algorithm, we take twin cover X ′, which means that

for every Ti ⊆ V \X, ni ≥ pωi holds. Since cliques in

G[Ti] have common neighbors and ni ≥ pωi, only the

number of available labels matters by Lemma 3. Since

the existence of an ILP solution guarantees this, we can

decide whether a partial labeling can be extended to a

proper k-L(p, 1)-Labeling, or not.

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 7

Because s ≤ 2tc and t ≤ 22
tc

, the number of variables

of the ILP is at most 22
tc

; it can be solved in FPT time

with respect to tc [27]. Since tc′ ≤ tc+ 2tc · p · ω, the

total running time is FPT time with respect to tc+ω.

5.2 L(1, 1)-Labeling parameterized by twin

cover number

Unlike L(p, 1)-labeling with p ≥ 2, the distance-

1 condition of L(1, 1)-labeling requires just that the

labels between adjacent vertices are different. Thus,

L(1, 1)-Labeling seems to be easier than L(p, 1)-

Labeling with p ≥ 2. Actually, we can show that

L(1, 1)-Labeling is fixed-parameter tractable param-

eterized only by twin cover number.

Lemma 5. For a graph G, let u and v be twins with

edge {u, v}. For G′ = (V,E′) with E′ = E \ {{u, v}},
any L(1, 1)-labeling on G′ is also an L(1, 1)-labeling on

G and verse visa.

Corollary 4. For G′ defined as above, λ1,1(G′) =

λ1,1(G) holds.

Let X be a twin cover again, and then each con-

nected component in G[V \ X] forms a clique, each

of the edges in which are twin edges. Lemma 4 im-

plies that graph G′ obtained by removing all the edges

in G[V \ X] has the same L(1, 1)-labeling number of

G. The above deletion shows that X is also a vertex

cover of G′. Since L(1, 1)-Labeling is fixed-parameter

tractable when parameterized by vertex cover number

[13], we have the following theorem.

Theorem 4. L(1, 1)-Labeling is fixed-parameter

tractable when parameterized by twin cover number.

Since λ1,1(G) ≤ λp,1(G) ≤ λp,p(G) = pλ1,1(G) holds,

an L(1, 1)-labeling gives an approximation for L(p, 1)-

Labeling. In fact, by replacing the labels of an op-

timal L(1, 1)-labeling of G with multiples of p, we ob-

tain an L(p, 1)-labeling whose approximation factor is

at most p.

Corollary 5. For L(p, 1)-Labeling, there is a fixed-

parameter p-approximation algorithm with respect to

twin cover number.

Reference

[1] Yuichi Asahiro, Hiroshi Eto, Tesshu Hanaka, Guo-

hui Lin, Eiji Miyano, and Ippei Terabaru. Param-

eterized algorithms for the happy set problem. In

International Conference and Workshops on Algo-

rithms and Computation (WALCOM 2020), pages

323–328. Springer, 2020.

[2] Hans L Bodlaender, P̊al Gr 膿 n̊as Drange,

Markus S Dregi, Fedor V Fomin, Daniel Lok-

shtanov, and Micha l Pilipczuk. A ckn 5-

approximation algorithm for treewidth. SIAM

Journal on Computing, 45(2):317–378, 2016.

[3] Hans L Bodlaender, Ton Kloks, Richard B Tan,

and Jan Van Leeuwen. Approximations for λ-

colorings of graphs. The Computer Journal,

47(2):193–204, 2004.

[4] John Adrian Bondy and Uppaluri Siva Ramachan-

dra Murty. Graph Theory. Springer, 2008.

[5] Tiziana Calamoneri. The L(h, k)-labelling prob-

lem: an updated survey and annotated bibliog-

raphy. The Computer Journal, 54(8):1344–1371,

2011.

[6] Gerard J Chang and David Kuo. The L(2,1)-

labeling problem on graphs. SIAM Journal on

Discrete Mathematics, 9(2):309–316, 1996.

[7] B. Courcelle, J. A. Makowsky, and U. Rotics. Lin-

ear time solvable optimization problems on graphs

of bounded clique-width. Theory of Computing

Systems, 33(2):125–150, 2000.

[8] Nicole Eggemann, Frédéric Havet, and Steven D.

Noble. k-L(2, 1)-labelling for planar graphs is NP-

complete for k ≥ 4. Discrete Applied Mathematics,

158(16):1777–1788, 2010.

[9] Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi,

and Yusuke Kobayashi. Parameterized Algorithms

for Maximum Cut with Connectivity Constraints.

In International Symposium on Parameterized and

Exact Computation (IPEC 2019), volume 148,

pages 13:1–13:15, 2019.

[10] Jǐŕı Fiala, Tomáš Gavenčiak, Dušan Knop, Mar-

tin Kouteckỳ, and Jan Kratochv́ıl. Fixed parame-

ter complexity of distance constrained labeling and

uniform channel assignment problems. In Interna-

tional Computing and Combinatorics Conference

(COCOON 2016), pages 67–78. Springer, 2016.

[11] Jǐŕı Fiala, Tomáš Gavenčiak, Dušan Knop, Mar-

tin Kouteckỳ, and Jan Kratochv́ıl. Parameterized

complexity of distance labeling and uniform chan-

nel assignment problems. Discrete Applied Math-

ematics, 248:46–55, 2018.

[12] Jǐŕı Fiala, Petr A Golovach, and Jan Kra-

tochv́ıl. Distance constrained labelings of graphs

of bounded treewidth. In International Collo-

quium on Automata, Languages, and Program-

ming (ICALP 2005), pages 360–372. Springer,

第 16回情報科学ワークショップ＠名古屋工業大学＋オンライン 4-A 8

2005.

[13] Jiŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl.

Parameterized complexity of coloring problems:

Treewidth versus vertex cover. Theoretical Com-

puter Science, 412(23):2513–2523, 2011.

[14] Jǐŕı Fiala, Ton Kloks, and Jan Kratochv́ıl. Fixed-

parameter complexity of λ-labelings. Discrete Ap-

plied Mathematics, 113(1):59 – 72, 2001.

[15] Robert Ganian. Improving vertex cover as a graph

parameter. Discrete Mathematics and Theoretical

Computer Science, 17(2):77–100, 2015.

[16] Serge Gaspers and Kamran Najeebullah. Optimal

surveillance of covert networks by minimizing in-

verse geodesic length. In AAAI Conference on Ar-

tificial Intelligence (AAAI 2019), pages 533–540,

2019.

[17] John P. Georges and David W. Mauro. General-

ized vertex labelings with a condition at distance

two. In Congressus Numerantium, volume 109,

pages 141–159, 1995.

[18] D. Gonçalves. On the L(p, 1)-labelling of graphs.

Discrete Mathematics, 308(8):1405 – 1414, 2008.

[19] Jerrold R Griggs and Roger K Yeh. Labelling

graphs with a condition at distance 2. SIAM Jour-

nal on Discrete Mathematics, 5(4):586–595, 1992.

[20] William K Hale. Frequency assignment: The-

ory and applications. Proceedings of the IEEE,

68(12):1497–1514, 1980.

[21] Magnús M Halldórsson. Approximating the

L(h, k)-labelling problem. International Journal of

Mobile Network Design and Innovation, 1(2):113–

117, 2006.

[22] Tesshu Hanaka, Kazuma Kawai, and Hirotaka

Ono. Computing L(p, 1)-labeling with combined

parameters, 2020. arXiv:2009.10502.

[23] Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono,

and Yushi Uno. A linear time algorithm for L(2, 1)-

labeling of trees. Algorithmica, 66(3):654–681,

2013.

[24] Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono,

and Yushi Uno. Algorithmic aspects of distance

constrained labeling: a survey. International Jour-

nal of Networking and Computing, 4(2):251–259,

2014.

[25] Bart M. P. Jansen and Astrid Pieterse. Opti-

mal data reduction for graph coloring using low-

degree polynomials. Algorithmica, 81(10):3865–

3889, 2019.

[26] Dusan Knop, Tomás Masaŕık, and Tomás Toufar.

Parameterized Complexity of Fair Vertex Evalu-

ation Problems. In International Symposium on

Mathematical Foundations of Computer Science

(MFCS 2019), volume 138, pages 33:1–33:16, 2019.

[27] H. W. Lenstra. Integer programming with a fixed

number of variables. Mathematics of Operations

Research, 8(4):538–548, 1983.

[28] Neeldhara Misra and Harshil Mittal. Imbalance

parameterized by twin cover revisited. In Comput-

ing and Combinatorics (COCOON 2020), pages

162–173. Springer, 2020.

[29] S. Oum. Approximating rank-width and clique-

width quickly. ACM Transactions on Algorithms,

5(1):10:1–10:20, 2008.

[30] Fred S. Roberts. T-colorings of graphs: recent re-

sults and open problems. Discrete Mathematics,

93(2):229 – 245, 1991.

[31] Ioan Todinca. Coloring powers of graphs of

bounded clique-width. In Graph-Theoretic Con-

cepts in Computer Science (WG 2003), pages 370–

382. Springer, 2003.

[32] Xiao Zhou, Yasuaki Kanari, and Takao Nishizeki.

Generalized vertex-colorings of partial k-trees. IE-

ICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E83-

A(4):671–678, 2000.

http://arxiv.org/abs/2009.10502

	Introduction
	Our contribution
	Related work

	Preliminaries
	Parameterization by cw+
	Parameterization by tw+
	Parameterization by twin cover number
	L(p,1)-Labeling parameterized by tc+
	L(1,1)-Labeling parameterized by twin cover number

