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Intelligent multi-agent systems with physically moving agents are attractive for various practical
scenarios, e.g., intersection management [Dresner and Stone, 2008], automated warehouse [Wur-
man et al., 2008], and vehicle parking [Okoso et al., 2019]. Representation, planning, execution,
and their smooth integration are essential factors for developing such systems. In this talk, we
present three studies coping with these aspects and provide an overall picture.

Planning Multi-Agent Path Finding (MAPF) [Stern, 2019] is a planning problem where multiple
agents on a graph are assigned a path to their respective goals without collisions. Powerful optimal
solvers have been studied [Felner et al., 2017]; however, finding optimal solutions is NP-hard [Yu and
LaValle, 2013], thus, we must use sub-optimal solvers to cope with large-scale problems, e.g., with
hundreds of agents. Furthermore, optimal solvers are typically inappropriate in online real-time
settings where deliberation time is limited. In contrast, this is where anytime planners [Zilberstein,
1996] — i.e., get initial solutions quickly, improve them gradually, and provide valid plans whenever
interrupted — are particularly attractive.

As the first topic, we introduce a framework of iterative refinement to realize anytime MAPF. The
proposal uses a sub-optimal MAPF solver to obtain an initial plan quickly, then repeats the two steps:
1) select a subset of agents, 2) use an optimal MAPF solver to refine their paths while keeping other
paths unchanged. This scheme rapidly yields “good” enough plans with high scalability because we
can use any solver for the initial plan and the optimal solvers are used in small size problems. As
a proof-of-concept, we present an algorithm called IR which tries to reduce the gap between ideal
and actual costs of agents’ paths. Evaluations in various scenarios with MAPF benchmarks yield
promising results in that convergence is fast, scalable, and with reasonable quality.

Execution An MAPF plan is bound to be executed in real-world situations with agents (robots).
Typical MAPF is defined in discrete time. Agents are assumed to do two kinds of atomic actions
synchronously: move to a neighboring location or stay at their current location. Perfect executions
for the planning are however difficult to ensure because timing assumptions are inherently uncer-
tain in reality. Even worse, the potential of unexpected interference increases with the number of
agents, hence the need to prepare for imperfect executions regarding the timing assumptions.

So far, two policies enforce a robust execution of MAPF plans taken as input: either by forcing
agents to synchronize or by executing plans while preserving temporal dependencies [Ma et al.,
2017]; however, considering an extreme example where one agent moves very slowly or crashes, it
turns out that they are still vulnerable to delays.

As the second topic, we present an alternative approach, time-independent planning [Okumura
et al., 2020], which is both online and distributed. We represent reality as a transition system that
changes configurations according to atomic actions of agents. In this time-independent model, any
a priori knowledge for timings of atomic actions is unavailable, representing non-deterministic be-
haviors of the external environment. We propose an example of time-independent planning, Causal-
PIBT, which extends a recently-developed decoupled approach to solve MAPF iteratively, called Pri-
ority Inheritance with Backtracking (PIBT) [Okumura et al., 2019]. We also present how an offline
MAPF plan enhances Causal-PIBT. Empirical results in a simulated environment with stochastic
delays of agents’ moves, called MAPF-DP (with Delay Probabilities) [Ma et al., 2017], support the
validity of our proposal.

Representation, Integration Representation, how to model the world, has been the central
issue for AI and robotics fields [Davis et al., 1993]; however, there is room to consider whether
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robots themselves should have a representation of their working environment. As famously argued
by Brooks [Brooks, 1991], “the world is its own best model”.

Derivative concepts, direct use of the world as the representation, can be seen in navigation
tasks. In general, robots rely on internal maps as the representation, however, the use of the in-
ternal maps entails a number of serious difficulties derived mostly from the correspondence of
external physical objects and internal representation. Using the environment itself as the repre-
sentation, realized by spatially and distributedly deploying sensors or tags in the environment, has
been demonstrated as useful for navigation, e.g., guiding robots by sensor network [Verma et al.,
2005] or stigmergic approaches [Khaliq and Saffiotti, 2015].

As the final topic, we introduce a concept that offloads not only the representation but also the
planning function to the environment. The rationales are 1) functional separation to focus robots in
other tasks, and 2) response to a dynamic environment. As a proof-of-concept, we present AFADA
and its prototyping; an architecture that consists of mobile robots that evolve over an active envi-
ronment consisting of flat cells each equipped with a computing unit. Each cell can communicate
with its direct neighboring cells and a robot on the cell. Using this local communication, the cells
collectively manage environmental representation. The cells do the planning, i.e., navigating robots
to their destinations. Robots just follow the instructions from the cell — neither representation nor
planning is necessary in robots.
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