
Gathering algorithms for a strong team of mobile

agents in weakly Byzantine environments

Jion Hirose1, Junya Nakamura2, Fukuhito Ooshita1, and Michiko Inoue1

1Nara Institute of Science and Technology
2Toyohashi University of Technology

Abstract

We study the gathering problem requiring a team of mobile agents to gather at a single node
in arbitrary networks. The team consists of k agents with unique identifiers (IDs), and f of them
are weakly Byzantine agents, which behave arbitrarily except falsifying their identifiers. The
agents move in synchronous rounds and cannot leave any information on nodes. If the number
of nodes n is given to agents, the existing fastest algorithm tolerates any number of weakly
Byzantine agents and achieves gathering with simultaneous termination in O(n4 · |Λgood|·X(n))
rounds, where |Λgood| is the length of the maximum ID of non-Byzantine agents and X(n) is
the number of rounds required to explore any network composed of n nodes. In this paper,
we ask the question of whether we can reduce the time complexity if we have a strong team,
i.e., a team with a few Byzantine agents, because not so many agents are subject to faults
in practice. We give a positive answer to this question by proposing two algorithms in the
case where at least 4f2 + 9f + 4 agents exist. Both the algorithms take the upper bound N
of n as input. The first algorithm achieves gathering with non-simultaneous termination in
O((f + |Λgood|) · X(N)) rounds. The second algorithm achieves gathering with simultaneous
termination in O((f + |Λall|) · X(N)) rounds, where |Λall| is the length of the maximum ID
of all agents. The second algorithm significantly reduces the time complexity compared to the
existing one if n is given to agents and |Λall|= O(|Λgood|) holds.

1 Introduction

1.1 Background

Mobile agents (in short, agents) are software programs that move autonomously and perform various
tasks in a distributed system. A task that collects multiple agents on the same node is called a
gathering, and this task has been widely studied from the theoretical aspect of distributed systems [1].
By accomplishing this task, the agents can exchange information with each other more efficiently,
and it becomes easy to carry out future cooperative behaviors.

In operations of large-scale distributed systems, we cannot avoid facing faults of agents. Among
them, Byzantine faults are known to be the worst faults because Byzantine faults do not make any
assumption about the behavior of faulty agents (called Byzantine agents). For example, Byzan-
tine agents can stop and move at any time apart from their algorithm, and tell arbitrary wrong
information to other agents.

In this study, we consider the deterministic gathering problem with Byzantine agents and propose
two synchronous gathering algorithms for the problem.

1.2 Related works

The gathering problem has been studied for the first time by Schelling [5]. In that paper, the author
studied the gathering problem of exactly two agents, called the rendezvous problem. After that,

1

Table 1: A summary of synchronous Byzantine gathering algorithms with unique IDs. Here, n is
the number of nodes, N is the upper bound of n, |λgood| is the length of the smallest ID among
non-Byzantine agents, |Λgood| is the length of the largest ID among non-Byzantine agents, |Λall|
is the length of the largest ID among agents, k is the number of agents, and f is the number of
Byzantine agents.

Input Byzantine
Condition of

#Byzantine agents
Simultaneous
termination

Time complexity

[2] n Weak f + 1 ≤ k Possible O(n4 · |Λgood|·X(n))
[2] f Weak 2f + 2 ≤ k Possible Poly. of n & |Λgood|
[3] n, f Strong 2f + 1 ≤ k Possible Exp. of n & |Λgood|
[3] f Strong 2f + 2 ≤ k Possible Exp. of n & |Λgood|
[4] ⌈log log n⌉ Strong 5f2 + 7f + 2 ≤ k Possible Poly. of n & |λgood|

Proposed algorithm 1 N Weak 4f2 + 9f + 4 ≤ k Impossible O((f + |Λgood|) ·X(N))
Proposed algorithm 2 N Weak 4f2 + 9f + 4 ≤ k Possible O((f + |Λall|) ·X(N))

the rendezvous problem and its generalization, the gathering problem, have been widely studied in
various environments that combine agent synchronization, anonymity, presence/absence of memory
on a node (called whiteboard), presence/absence of randomization, and topology, etc. [1]. The
purpose of these studies is to clarify the solvability of the gathering problem and its costs (e.g., time,
the number of moves, and memory space, etc.) if solvable. The rest of this section describes the
deterministic gathering problem in arbitrary networks, on which we focus in this paper.

Many of the papers dealing with the rendezvous problem assume that agents move synchronously
in a network and that agents cannot leave any information on nodes, that is, whiteboards do not
exist [1]. These works have studied the feasibility of the rendezvous and, if feasible, the time
required to accomplish the task. If agents are anonymous (i.e., do not have IDs), the deterministic
rendezvous cannot be achieved in some symmetric graphs because the symmetry cannot be broken.
In the literature [6, 7, 8, 9], rendezvous algorithms have been proposed in any graph by assuming a
unique ID for each agent. Dessmark et al. [6] have proposed an algorithm to achieve the rendezvous
in polynomial time of n, λ, and τ , where n is the number of nodes, λ is the smallest ID among
agents, and τ is the difference between the startup times of agents. Kowalski et al. [7] and Ta-shma
et al. [8] have improved the time complexity and have proposed algorithms to achieve the rendezvous
in time independent of τ . In addition, Millar et al. [9] have analyzed the trade-off between the time
required for rendezvous and the number of moves. On the other hand, some papers [10, 11, 12]
have investigated the memory space, the time, and the number of moves required to achieve the
deterministic rendezvous without assuming a unique ID of each agent. Since the rendezvous cannot
be accomplished for some initial arrangements of agents and graphs, they have proposed algorithms
for limited graphs and initial arrangements. Fraigniaud et al. [10, 11] have proposed algorithms
for trees, and Czyzowicz et al. [12] have proposed an algorithm for arbitrary graphs when initial
arrangements of agents are not symmetric.

While many papers deal with the rendezvous problem in synchronous environments, some pa-
pers assume asynchronous environments where agents move at different constant speeds or move
asynchronously. In the latter case, speeds of agents in each time are always determined by the
adversary. For more details, please refer to the literature [13, 14, 15, 16] for a finite graph and the
literature [17, 18, 19] for an infinite graph.

Recently some papers [2, 3, 20, 21, 4] have studied the gathering problem in the presence of
Byzantine agents. Table 1 shows this research and the related researches that are closest to this
research. These studies assume agents with unique IDs and consider two types of Byzantine agents
depending on whether they can falsify their own IDs. Weakly Byzantine agents perform arbitrary
behaviors except falsifying their own IDs, and strongly Byzantine agents perform arbitrary behaviors,
including falsifying their own IDs.

Dieudonné et al. [2] have studied the gathering problem in synchronous environments where k
agents exist in a n-node arbitrary network and f of them are Byzantine. For weakly Byzantine agents,
if n is given to agents, the gathering algorithm with the time complexity of O(n4 · |Λgood|·X(n)) has
been proposed, where |Λgood| is the length of the largest ID among non-Byzantine agents and X(n)

2

is the number of rounds required to explore any network composed of n nodes, while, if f is given
to agents, the gathering algorithm with the time complexity that is polynomial of n and |Λgood|
has been proposed. The numbers of non-Byzantine agents required for the gathering algorithms are
at least one and f + 2, respectively, and the numbers are proven to be tight. On the other hand,
for strongly Byzantine agents, in the cases where n and f are given to agents and f is given to
agents, the gathering algorithms whose time complexities are exponential of n and |Λgood| have been
proposed. The numbers of non-Byzantine agents required for the gathering algorithms are at least
2f + 1 and 4f + 2, respectively, while the numbers of non-Byzantine agents required to solve the
gathering problems under these conditions are f+1 and f+2, respectively. Bouchard et al. [3] have
proposed the algorithms that show tight results for the number of non-Byzantine agents required to
solve the gathering problem for both cases in the presence of strongly Byzantine agents. That is, the
numbers of non-Byzantine agents required for the algorithms are at least f+1 and f+2, respectively.
However, the time complexities of the algorithms are still exponential of n and |Λgood|. Bouchard et
al. [4] have proposed the gathering algorithm with the time complexity that is polynomial time for
the first time in presence of strongly Byzantine agents in synchronous environments. The gathering
algorithm operates under the assumption that ⌈log log n⌉ is given to agents and at least 5f2+6f +2
non-Byzantine agents exist in the network.

Tsuchida et al. [20] have studied the gathering algorithm in synchronous environments with
weakly Byzantine agents under the assumption that each node is equipped with an authenticated
whiteboard, where each agent can leave information on its dedicated area but every agent can read
all information. If the upper bound F of f is given to agents, the gathering algorithm with the
time complexity of O(Fm) has been proposed, where m is the number of edges. Tsuchida et al. [21]
have proposed the gathering algorithms in asynchronous environments in the presence of weakly
Byzantine agents under the same assumption of authenticated whiteboards.

1.3 Our contributions

We seek an algorithm that achieves the gathering with small time complexity in synchronous envi-
ronments with weakly Byzantine agents. When agents cannot leave any information on nodes, the
existing fastest algorithm is the one proposed by Dieudonné et al. [2]. The algorithm tolerates any
number of weakly Byzantine agents, achieves the gathering with simultaneous termination, and its
time complexity is O(n4 · |Λgood|·X(n)), where n is the number of nodes, |Λgood| is the length of the
largest ID among non-Byzantine agents, and X(n) is the number of rounds required to explore any
network composed of n nodes. When agents can use authenticated whiteboards on nodes, Tsuchida
et al. [20] have proposed the algorithm that is faster than that of Dieudonné et al. [2]. However, the
assumptions of authenticated whiteboards are strong and greatly restrict the behavior of Byzantine
agents.

In this paper, we try to reduce the time complexity by taking advantage of a strong team, that
is, a team with a few Byzantine agents. Since not so many agents are subject to faults in practice,
the assumption of a strong team is reasonable. We propose two gathering algorithms that tolerate
f weakly Byzantine agents in the case where a strong team composed of at least 4f2 + 9f + 4
agents exist (see Table 1). Both the algorithms take the upper bound N of n as input. The
first algorithm achieves the gathering with non-simultaneous termination and its time complexity is
O((f + |Λgood|) · X(N)), where |Λgood| is the length of the maximum ID of non-Byzantine agents.
The second algorithm achieves the gathering with simultaneous termination and its time complexity
is O((f + |Λall|) · X(N)), where |Λall| is the length of the maximum ID of all agents. If n is
given to agents, the second algorithm significantly reduces the time complexity compared to that of
Dieudonné et al. in case of |Λall|= O(|Λgood|).

3

2 Preliminaries

2.1 Distributed systems

A distributed system is modeled by a connected undirected graph G = (V,E), where V is a set of n
nodes, and E is a set of edges. If an edge {u, v} ∈ E exists between the nodes u, v ∈ V , u and v are
said to be adjacent. A set of adjacent nodes of node v is denoted by Nv = {u | {v, u} ∈ E}. The
degree of node v is defined as d(v) = |Nv|. Each edge connected to node v is locally and uniquely
labeled by function Pv : {{v, u} | u ∈ Nv} → {1, 2, ..., d(v)} that satisfies Pv({v, u}) ̸= Pv({v, w})
for edges {v, u} and {v, w} (u ̸= w). Pv(v, u) is called the port number of an edge {v, u} on node
v. Any node has neither ID nor memory. Time is discretized, and each discretized time is called a
round.

2.2 Mobile agents

There are k agents a1, a2, ..., ak in the system. All agents cannot mark visited nodes or traversed
edges in any way. Each agent ai has a unique ID denoted by ai.ID ∈ N, but does not know a priori
the IDs of other agents. Also, agents know the upper bound N of the number of nodes, but they do
not know k, the topology of the graph, or n. The amount of agent memory is unlimited, and the
contents of memory are not changed during a move through an edge.

The adversary wakes up at least one agent at the first round. We call an agent that did not start
at the first round dormant. A dormant agent is woken up when the adversary wakes up the agent
at some round or an agent visits the starting node of the dormant agent. Note that the adversary
can awake dormant agents at different rounds.

An agent is modeled as a state machine (S, δ). Here, S is a set of agent states, and a state is
represented by a tuple of the values of all the variables that an agent has. The state transition
function δ outputs the next agent state, whether the agent stays or leaves, and the outgoing port
number if the agent leaves. The outputs are determined from the current agent state, the states of
other agents on the same node, the degree of the current node, and the entry port. An agent has a
special state representing the termination of an algorithm. After reaching the state, the agent never
executes the algorithm. If several agents are on node v, the agents can read all the information
that they have (even if some of them have terminated). However, if two agents traverse the same
edge simultaneously in different directions, the agents do not notice this fact. When an agent enters
a node v via an edge {u, v}, it learns the degree d(v) of v and the port number Pv(v, u). Agents
execute the algorithm synchronously. That is, at the beginning of a round, each agent reads states of
all agents on the current node, executes the state transition. If an agent decides to move, it arrives
at the destination node before the beginning of the next round. Note that, in each round, all agents
on a single node obtain the same information of states of the agents.

2.3 Byzantine agents

There are f weakly Byzantine agents among k agents. Weakly Byzantine agents act arbitrarily
without following an algorithm, but except changing their IDs. All agents except weakly Byzantine
agents are called good. Good agents know neither the actual value nor the upper bound of f . The
adversary wakes up at least one good agent at the first round.

2.4 The gathering problems

We consider the following two problems. The gathering problem with non-simultaneous termination
requires the following conditions: (1) every good agent terminates an algorithm, and (2) when all
the good agents terminate an algorithm, they are on the same node. The gathering problem with
simultaneous termination requires all the good agents to terminate an algorithm at the same round
on the same node.

We measure the time complexity of a gathering algorithm by the number of rounds from beginning
(i.e., the first good agent wakes up) to the round in which all the good agents terminate.

4

2.5 Procedures

In the proposed algorithms, we use the graph exploration procedure and the extended label proposed
in the literature.

The exploration procedure, called EXPLO(N), allows an agent to traverse all nodes of any
graph composed of at most N nodes, starting from any node of the graph. An implementation of
this procedure is based on universal exploration sequences (UXS) and is a corollary of the result by
Reingold [22]. The number of moves of EXPLO(N) is denoted by XN .

Let b1b2 · · · bℓ be the binary representation of ai.ID, where ℓ = |ai.ID|. The extended label of
ai is defined as ai.ID

∗ = 10b1b1b2b2 · · · bℓbℓ 10b1b1b2b2 · · · bℓbℓ · · ·. We have the following lemma
about the extended label ai.ID

∗, which is used to prove the correctness of the proposed algorithms.

Lemma 2.1. [6] For two different agents ai and aj, assume that ai.ID
∗ = x1x2 · · · and aj .ID

∗ =
y1y2 · · · hold. Then, for some k ≤ 2⌊log(min(ai.ID, aj .ID))⌋+ 6, xk ̸= yk holds.

3 A gathering algorithm with non-simultaneous termination

In this section, we propose an algorithm for the gathering problem with non-simultaneous termina-
tion by assuming a strong team composed of 4f2 + 9f + 4 agents. That is, at least (4f + 4)(f + 1)
good agents exist in the network. Recall that agents know N , but do not know n, k, or f .

3.1 Overview

The proposed algorithm aims to gather all good agents on a single node. The algorithm achieves
this goal by three stages: CollectID, MakeGroup, and Gather stages. In the CollectID
stage, agents collect IDs of all good agents. In the MakeGroup stage, agents make a reliable group,
which is composed of at least 4f+4 agents. In the Gather stage, all good agents gather on a single
node and achieve the gathering. Each stage consists of multiple phases, and each phase consists of
PN ≥ XN rounds. We will discuss the actual value of PN later, and here just note that the duration
of each phase is sufficient for an agent to explore the network by EXPLO(N). For simplicity, we
first explain the overview under the assumption that agents know f and agents awake at the same
round. Under this assumption, all good agents start each phase at the same round.

In the CollectID stage, agents collect IDs of all good agents. To do this, in the x-th phase
of the CollectID stage, each agent ai reads the x-th bit of ai.ID

∗ and decides the behavior. If
the bit is 1, ai executes EXPLO(N) during the phase. If the bit is 0, ai waits during the phase.
Agent ai has variable ai.L to store a set of IDs, and if ai finds another agent on the same node
while exploring or waiting, it records the agent’s ID in ai.L. Agent ai executes this procedure until
the (2⌊log(ai.ID)⌋+6)-th phase, and then finishes the CollectID stage. From Lemma 2.1, ai can
meet all other good agents and hence obtain IDs of all good agents.

In the MakeGroup stage, agents make a reliable group composed of at least 4f + 4 agents.
To do this, agents with small IDs keep waiting, and the other agents search for the agents with
small IDs. More concretely, if the f +1 smallest IDs in ai.L contains ai.ID, ai keeps waiting during
this stage. Otherwise, ai assigns the smallest ID in ai.L to variable ai.target, and searches for the
agent with ID ai.target, say atarget, by executing EXPLO(N) in a phase. If ai finds atarget on some
node, it ends the search and waits on the node. If ai does not find atarget even after completing
EXPLO(N), it regards atarget as a Byzantine agent. In this case, ai assigns the second smallest
ID in ai.L to ai.target, and searches for the agent with ID ai.target in the next phase. Agent ai
continues this behavior until it finds a target agent. Since there are at most f Byzantine agents,
the good agent with the smallest ID, say amin, keeps waiting during the MakeGroup stage. This
means that agents always find amin if they search for amin, and consequently, the number of agents
searched for by good agents is at most f +1 (including amin and f Byzantine agents). Since at least
(4f + 4)(f + 1) good agents exist, even if the good agents are distributed to f + 1 nodes evenly, at
least 4f +4 agents gather in one node according to the pigeonhole principle. In other words, agents
can make a reliable group. The ID of the target agent in a reliable group is used as the group ID.

5

Algorithm 1 Procedure Algorithm(N) for an agent ai whose ai.ID = b1b2 · · · bℓ where ℓ = |ai.ID|
1: ai.state← CorrectID
2: ai.L← {ai.ID}, ai.BL← ∅, ai.GL← ∅
3: ai.GID ← NULL
4: ai.EndCI ← False
5: ai.x← 1
6: Explore the network by EXPLO(N)
7: while True do
8: if ai.EndCI = False then
9: Execute ai.x-th phase of the CollectID stage

10: else
11: Execute the MakeGroup stage
12: end if
13: ai.x← ai.x+ 1
14: Execute the Gather stage
15: end while

For Gather stage, a reliable group is divided into two groups, an exploring group and a waiting
group, so that each of which contains at least 2f + 2 agents.

In the Gather stage, agents achieve the gathering after at least one reliable group is created.
To do this, agents collect group IDs of all reliable groups in the first phase of the Gather stage.
More concretely, while agents in a waiting group keep waiting, other agents (in an exploring group
or not in a reliable group) explore the network by EXPLO(N). When ai finds a reliable group,
it records the group ID. Note that, since each of an exploring group and a waiting group contains
at least 2f + 2 agents, it contains at least f + 2 good agents. Therefore, when an agent meets an
exploring or waiting group, the agent can understand that this group contains at least two good
agents, and hence it is reliable. In the second phase of the Gather stage, agents move to the node
where the waiting group of the smallest group ID stays. That is, while agents in the waiting group
of the smallest group ID keep waiting, other agents search for the group by EXPLO(N).

However, there are three problems to implement the above behavior. The first problem is that
agents not in a reliable group cannot instantly know the fact that a reliable group has been created,
and so they do not know when to transition to the Gather stage. To solve this problem, we make
agents execute the MakeGroup stage and the Gather stage alternately. Here, we design the two
stages so that (1) agents achieve the gathering in the Gather stage if a reliable group is created
in the MakeGroup stage, and (2) otherwise behaviors in the Gather stage do not affect the
MakeGroup stage. The second problem is that agents do not know f . To solve this problem,
at the end of the CollectID stage, agents estimate the number of Byzantine agents, say f̃ , from
the fact that at least (4f + 4)(f + 1) good agents exist and their ID lists include IDs of all good
agents. However, values of f̃ differ by at most one among good agents, because some good agents
may meet some Byzantine agents but others may not in the CollectID stage. Therefore, we design
the behaviors of the MakeGroup stage and the Gather stage so that agents can gather even if
the estimated values have the difference. The third problem is that some agents may be dormant.
To solve this problem, we make agents first explore the network by EXPLO(N) to wake up dormant
agents. As a result, we guarantee that all good agents start the algorithm within XN rounds, but
there still exists a problem. Good agents execute different phases at the same round because these
agents woke up at different rounds. So, we adjust the number of rounds of each phase to guarantee
that all the good agents execute the same phase at the same time for sufficient rounds.

3.2 Details

Algorithm 1 is the pseudocode of the proposed algorithm. The proposed algorithm realizes the
gathering using three stages: The CollectID stage makes agents collect IDs of all good agents, the

6

Figure 1: The stage flow.

MakeGroup stage creates a reliable group composed of at least 4f + 4 agents, and the Gather
stage gathers all good agents.

The overall flow of the algorithm is shown in Fig. 1. After starting the algorithm, agent ai first
explores the network with EXPLO(N) to wake up all dormant agents (line 6 of Algorithm 1). By
this behavior, after the first good agent wakes up, all good agents wake up within XN rounds. After
that, ai executes phases of the CollectID, MakeGroup, and Gather stages. Here we define one
phase as PN = 3XN +1 rounds. Since all good agents wake up within XN rounds, the (XN +1)-th
to 2XN -th rounds of the x-th phase of good agent ai overlap with the first 3XN rounds of the x-th
phases of all other good agents. Hence, we have the following observation.

Observation 3.1. Let ai and aj be good agents. Assume that ai explores the network with EXPLO(N)
from the (XN + 1)-th round to the 2XN -th round of its x-th phase, and aj waits during the first
3XN rounds of its x-th phase. In this case, ai meets aj during the exploration.

After the initial exploration, ai alternately executes one phase of the CollectID stage and
two phases of the Gather stage (lines 9 and 14). After ai finishes the CollectID stage, it
alternately executes one phase of the MakeGroup stage (instead of the CollectID stage) and
two phases of the Gather stage (lines 11 and 14). The Gather stage interrupts the CollectID
and MakeGroup stages, but, as described later, the behaviors of the Gather stage do not affect
the behaviors of the CollectID and MakeGroup stages if no reliable group exists. Therefore,
we do not consider the behaviors of the Gather stage until a reliable group is created in the
MakeGroup stage.

Table 2 summarizes the variables used in the algorithm. Agent ai stores the current state of ai
in variable ai.state. Initially, ai.state = CorrectID holds. In addition, ai stores False in variable
ai.EndCI because it has not finished the CollectID stage. Also, ai stores the number of rounds
from the beginning in variable ai.count. By variable ai.count, ai determines which round of a phase
it executes. Agent ai increments ai.count for every round, but this behavior is omitted from the
following description.

3.2.1 The CollectID stage

Algorithm 2 is the pseudocode of the CollectID stage. In the CollectID stage, agents collect
IDs of all good agents. The CollectID stage of ai consists of 2⌊log(ai.ID)⌋+6 phases. Note that
the lengths of CollectID stages differ among agents. Agent ai uses variable ai.L to store a set of

7

Table 2: Variables of agents.
Variable Explanation

state

The current state of an agent. This variable takes one of the following values.

• CorrectID (has not yet finished the CollectID stage)

• SearchAgent (works as a search agent in the MakeGroup stage)

• TargetAgent (works as a target agent in the MakeGroup stage)

• ExploringGroup (belongs to an exploring group in the Gather stage)

• WaitingGroup (belongs to a waiting group in the Gather stage)
EndCI The variable that indicates whether an agent has finished the CollectID stage.

count The number of rounds from the beginning.

x The number of phases in the CollectID or MakeGroup stage

f̃ The estimated number of Byzantine agents.

L A set of agent IDs collected in the CollectID stage.

BL A set of agent IDs that the search agent regards as Byzantine agents.

target
Search agents: The ID the agent searches for.
Target agents: Its own ID.

F The consensus of f̃ among agents on the same node.

GID The group ID of the reliable group that the agent belongs to.

GL A set of group IDs collected in the Gather stage.

IDs, and initially, it records ai.ID in ai.L (line 2 of Algorithm 1). Agent ai determines the behavior
of the x-th phase depending on the x-th bit of ai.ID

∗. If the x-th bit is 0, ai waits for 3XN rounds
in the x-th phase (lines 1 to 2 of Algorithm 2). If the x-th bit is 1, ai waits for XN rounds, explores
the network by EXPLO(N), and then waits for XN round in the x-th phase (lines 4 to 7). During
these behaviors, if ai finds another agent aj on the same node, it records aj .ID in ai.L (lines 3 and
8). Note that, from Lemma 2.1 and Observation 3.1, ai meets all good agents and records IDs of all
good agents during the CollectID stage.

In the last round of the last phase of the CollectID stage, ai estimates the number of Byzantine
agents f̃ as ai.f̃ ← max{y | (4y + 4)(y + 1) ≤ |ai.L|} (line 12). As we prove later, ai.f̃ ≥ f holds,
and |ai.f̃ − aj .f̃ |≤ 1 holds for any good agent aj . Also, ai stores True in ai.EndCI (line 14).

3.2.2 The MakeGroup stage

Algorithm 3 is the pseudocode of the MakeGroup stage. In the pseudo code, for simplicity we
use and operation, which means that an agent executes the operations before and after the and
operation at the same time. In the MakeGroup stage, agents create a reliable group composed of
at least 4f + 4 agents. At the beginning of the MakeGroup stage, if the smallest ai.f̃ + 1 IDs in
ai.L contain ai.ID, agent ai becomes a target agent (line 3 of Algorithm 3). Otherwise, ai becomes
a search agent (line 5). Hereinafter, the good agent with the smallest ID is denoted by amin. As we
prove later, amin always becomes a target agent.

If ai is a target agent, it executes ai.target ← ai.ID (line 10) and waits for one phase on the
current node (line 11). While waiting, ai executes procedure consensus() to determine whether a
reliable group is created or not (line 13). We will explain the details of consensus() later.

Let us consider the case where ai is a search agent. The search agent ai stores in ai.BL IDs
of agents that ai regards as Byzantine agents (initially ai.BL is empty). In the first round of each
phase, ai chooses the agent with the smallest ID, excluding Byzantine agents in ai.BL (line 16).
After that, ai waits for XN rounds and then searches for the agent with ID ai.target, say atarget, by
executing EXPLO(N) (lines 17 and 18). If ai finds atarget on the same node during the exploration,
ai ends EXPLO(N) and waits on the node until the end of the phase (lines 21 to 22). We can

8

Algorithm 2 The ai.x-th phase of CollectID stage for an agent ai

1: if the ai.x-th bit of ai.ID
∗ is 0 then

2: Wait for 3XN rounds on the current node
3: ai.L← ai.L ∪ {IDs of agents ai met while waiting}
4: else
5: Wait for XN rounds on the current node
6: Explore the network by EXPLO(N)
7: Wait for XN rounds on the current node
8: ai.L← ai.L ∪ {IDs of agents ai met while exploring}
9: end if

10: // The (3XN + 1)-th round
11: if ai.x = 2⌊log ai.ID⌋+ 6 then
12: ai.f̃ ← max{y | (4y + 4)(y + 1) ≤ |ai.L|}
13: ai.x← 1
14: ai.EndCI ← True
15: end if
16: Wait for one round

show that, if atarget is good, atarget keeps waiting as a target agent, and consequently, ai finds
atarget and waits with atarget. Hence, if one of the following conditions holds, ai regards atarget as
a Byzantine agent: (1) ai did not find atarget during the exploration (lines 33 to 34), or (2) after
ai finds atarget, during the (XN + 1)-th round to the 2XN -th round, atarget moved to another node
or atarget.target ̸= atarget.ID holds (lines 26 to 30). In this case, ai adds atarget.ID to ai.BL, and
never searches for atarget in the later phases of the MakeGroup stage (lines 30 and 34). If ai did
not find atarget, it waits until the end of the phase (line 35).

To determine whether agents can create a reliable group, search agents (resp., target agents)
execute procedure consensus() in Algorithm 4 after they find their target agent (resp., from the
beginning). In procedure consensus(), agent ai first calculates the consensus ai.F of the estimated
number of Byzantine agents as follows. If the number of agents in the MakeGroup stage on the
current node is at least 4 · ai.f̃ , agent ai checks values of f̃ of all agents on the current node and
assigns the most frequent value to ai.F (line 2 of Algorithm 4). At this time, if multiple values are
the most frequent, ai chooses the smallest one.

After that, ai determines whether a reliable group is created. Agent ai observes states of all
agents on the same node, and regards the set of agents whose target is ai.target and who execute
the MakeGroup stage as the group candidate (line 3). If the group candidate contains at least
4 · ai.F + 4 agents and there exists atarget with atarget.target = atarget.ID = ai.target, ai regards
the group candidate as a reliable group (line 4). If ai understands that it is in a reliable group,
ai stores atarget.ID in variable ai.GID as the group ID of the reliable group (line 5). Note that,
as we prove later, all other good agents in the reliable group also understand that they are in the
reliable group, and assign atarget.ID to their variable GID at the same round. Therefore, agents can
identify members of a reliable group by observing variable GID. When a reliable group is created,
the group is divided into two groups, a (reliable) exploring group and a (reliable) waiting group, for
the Gather stage as follows. If the 2 · ai.F + 2 smallest IDs among agents in ai’s reliable group
contains ai.ID, ai belongs to an exploring group (line 7); otherwise, it belongs to a waiting group
(line 9). Note that each of an exploring group and a waiting group contains at least 2 · ai.F + 2
agents.

Once ai has determined that a reliable group is created, it does not calculate ai.F and does not
determine if a reliable group is created in subsequent rounds of this phase. Note that some good
agent aj with aj .target = atarget.ID may visit the current node after ai determines a reliable group.
In this case, aj can become a member of the reliable group (i.e., aj .GID ← atarget.ID = ai.GID).
This just increases the size of the reliable group and does not harm the algorithm.

9

Algorithm 3 MakeGroup stage for an agent ai

1: if ai.x = 1 then
2: if the smallest ai.f̃ + 1 IDs in ai.L contain ai.ID then
3: ai.state← TargetAgent
4: else
5: ai.state← SearchAgent
6: end if
7: end if
8: if ai.state = TargetAgent then
9: //ai is a target agent

10: ai.target← ai.ID
11: Wait for one phase on the current node
12: and
13: While waiting, execute consensus() every round
14: else
15: //ai is a search agent
16: ai.target← min(ai.L \ ai.BL)
17: Wait for XN rounds on the current node
18: Search for an agent atarget with ID ai.target by EXPLO(N)
19: and
20: if meet atarget while searching then
21: Stop EXPLO(N)
22: Wait until the end of the phase
23: and
24: While waiting, execute consensus() every round
25: and
26: if ai finds atarget Byzantine while waiting then
27: // This is true if, during the (XN + 1)-th round to
28: // the 2XN -th round, atarget moved to another
29: // node or atarget.target ̸= atarget.ID holds
30: ai.BL← ai.BL ∪ {ai.target}
31: end if
32: else
33: // Not meet atarget and hence atarget is Byzantine
34: ai.BL← ai.BL ∪ {ai.target}
35: Wait until the end of the phase
36: end if
37: end if

3.2.3 The Gather stage

Algorithm 5 is the pseudocode of the Gather stage. In the Gather stage, agents achieve the
gathering if at least one reliable group exists in the network. Note that two phases of the Gather
stage interrupt phases of the CollectID and MakeGroup stages. However, while executing the
Gather stage, agents never update variables used in the CollectID and MakeGroup stages.
Also, recall that the behaviors of the CollectID and MakeGroup stages do not depend on the
initial positions of agents in each phase. Hence, the behaviors of the Gather stage do not affect the
behaviors of the CollectID and MakeGroup stages. If agents have not finished the CollectID
stage, they wait for two phases (lines 1 to 2). In the following, we describe the behaviors of agents
that have finished the CollectID stage.

If agents have finished the CollectID stage, they try to achieve the gathering in two phases
of the Gather stage. In the first phase of the two phases, agents collect group IDs of all reliable

10

Algorithm 4 consensus() for an agent ai (Compute the consensus of f̃ and determine whether a
reliable group is created)

1: if ai.GID = NULL and the number of agents in the MakeGroup stage on the current node
is at least 4 · ai.f̃ then

2: ai.F ← the most frequent value of f̃ of agents on the same node (if more than one most
frequent value exists, choose the smallest one)

3: Let GC be a set of agents on the same node whose target is ai.target and who execute the
MakeGroup stage

4: if |GC|≥ 4 · ai.F + 4 and there exists atarget with atarget.target = atarget.ID = ai.target
then

5: ai.GID ← atarget.ID
6: if the 2 · ai.F + 2 smallest IDs in GC contain ai.ID then
7: ai.state← ExploringGroup
8: else
9: ai.state←WaitingGroup

10: end if
11: end if
12: end if

groups (lines 4 to 15). To do this, agents in waiting groups keep waiting for the phase, and other
agents (agents in exploring groups and agents not in reliable groups) explore the network during
the (XN + 1)-th round to the 2XN -th round. During this behavior, when an agent finds a reliable
waiting or exploring group, it records the group ID. After that, in the second phase, they gather on
the node where the reliable group with the smallest group ID exists (lines 16 to 29).

Here, we explain how agents find reliable exploring or waiting groups. Since agents enter the
Gather stage at different rounds, agents in a reliable group do not move together. This implies
that agent ai meets agents in a reliable group at different rounds. For this reason, whenever agent ai
meets aj with aj .GID ̸= NULL (i.e., aj says it is in a reliable group), ai adds a pair (aj .GID, aj .ID)
in a set ai.GL. Then, at the beginning of the second phase, ai checks ai.GL and computes group
IDs of reliable groups. More concretely, ai determines that gid is a group ID of a reliable group if
there exist at least ai.f̃ + 1 different IDs id1, id2, . . . such that (gid, idk) ∈ ai.GL for any k, that
is, the number of agents that conveyed gid as their group IDs is at least ai.f̃ + 1. In the rest of
this paragraph, we explain why this threshold ai.f̃ + 1 allows agent ai to recognize a reliable group
correctly. Assume that agent ai finds the exploring or waiting group that good agent aj belongs to.
Recall that the exploring or waiting group initially contains at least 2 · aj .F + 2 agents. From this
fact, even if f ≤ aj .F of them are Byzantine, at least aj .F + 2 good agents convey their group ID
to ai. Consequently, when ai finds the group, ai can determine that at least one good agent exists
in this group because |ai.f̃ − aj .F |≤ 1 holds. Therefore, if ai finds an exploring or waiting group

(i.e., agents with the same GID) composed of at least ai.f̃ +1 agents, ai can correctly recognize the
group as a reliable group.

In the following, we explain the detailed behavior of agent ai in the two continuous phases of the
Gather stage.

In the first phase, to collect all group IDs, agents in waiting groups keep waiting, and other
agents (agents in exploring groups and agents not in reliable groups) explore the network. To be
more precise, if agent ai belongs to a reliable waiting group, ai collects pairs of a group ID and an
agent ID in variable ai.GL by waiting and observing visiting agents. That is, ai waits for one phase,
and if ai finds agent aj with aj .GID ̸= NULL while waiting, it adds (aj .GID, aj .ID) to ai.GL
(lines 6 to 8). If agent ai belongs to a reliable exploring group or does not belong to a reliable group,
ai collects pairs of a group ID and an agent ID in variable ai.GL by exploring the network. That is,
ai waits for XN rounds, explores the network, and then waits for XN +1 rounds. If ai finds agent aj
with aj .GID ̸= NULL during the exploration, it adds (aj .GID, aj .ID) to ai.GL (lines 10 to 14).

In the second phase, all agents gather on the node where the reliable group with the smallest group

11

Algorithm 5 Gather stage for an agent ai

1: if ai.EndCI = False then
2: Wait for two phases on the current node
3: else
4: // The first phase
5: if ai.state = WaitingGroup then
6: Wait for one phase on the current node
7: and
8: While waiting, whenever ai meets aj with aj .GID ̸= NULL, execute ai.GL ← ai.GL ∪
{(aj .GID, aj .ID)}

9: else
10: Wait for XN rounds on the current node
11: Explore the network by EXPLO(N)
12: and
13: While exploring, whenever ai meets aj with aj .GID ̸= NULL, execute ai.GL← ai.GL∪
{(aj .GID, aj .ID)}

14: Wait for XN + 1 rounds on the current node
15: end if
16: // The second phase
17: //MemberID(gid) = {id | (gid, id) ∈ ai.GL}
18: //ReliableGID() = {gid | |MemberID(gid)|≥ ai.f̃ + 1}
19: if ReliableGID() = ∅ then
20: Wait for one phase on the current node
21: else if ai.state = WaitingGroup and ai.GID = min(ReliableGID()) then
22: Wait for 3XN rounds on the current node
23: Terminate the algorithm
24: else
25: Wait for XN rounds on the current node
26: By executing EXPLO(N), search for the node with a reliable waiting group whose group

ID is min(ReliableGID())
27: Wait on the node until the last round of the phase
28: Terminate the algorithm at the last round of the phase
29: end if
30: end if

ID exists. Initially, ai calculates the set ReliableGID() of group IDs of all reliable groups as follows:
(1) ai makes, for each group ID gid in ai.GL, a list of agent IDs that conveyed gid as its group ID
(i.e., MemberID(gid) = {id | (gid, id) ∈ ai.GL}), and (2) ai checks up group IDs such that at least
ai.f̃ + 1 agents conveyed the group ID (i.e., ReliableGID() = {gid | |MemberID(gid)|≥ ai.f̃ + 1}).
Note that, if ai belongs to a reliable exploring (resp., waiting) group, ai.GID ∈ ReliableGID() holds
because ai meets members of its own waiting (resp., exploring) group during the first phase. If ai
belongs to a reliable waiting group and satisfies ai.GID = min(ReliableGID()), it waits for 3XN

rounds and terminates the algorithm (lines 21 to 23). Otherwise, ai waits for XN rounds, and then,
by executing EXPLO(N), searches for the node with the reliable waiting group whose group ID
is min(ReliableGID()) (lines 25 to 26). After that, ai waits until the last round of this phase and
terminates the algorithm on the node (lines 27 to 28).

Theorem 3.1. Let n be the number of nodes, k be the number of agents, f be the number of weakly
Byzantine agents, and Λgood be the largest ID among good agents. If the upper bound N of n is
given to agents and (4f + 4)(f + 1) ≤ k holds, the proposed algorithm solves the gathering problem
with non-simultaneous termination in at most XN + 3(2⌊log Λgood⌋+ f + 7)(3XN + 1) rounds.

12

4 A gathering algorithm with simultaneous termination

In this section, we propose an algorithm for the gathering problem with simultaneous termination
by modifying the algorithm in the previous section. The underlying assumption is the same as that
of the previous section. In the following, we refer to the proposed algorithm in the previous section
as the previous algorithm. By the previous algorithm, all good agents gather on a single node but
terminate at different rounds. Therefore, the purpose of this section is to change the termination
condition of the previous algorithm so that all good agents terminate at the same round.

By the algorithm of section 3, after all good agents finish the CollectID stage and at least one
reliable group is created, all good agents gather at a single node during the next two consecutive
phases of the Gather stage. Hence, after good agents move to the gathering node in the Gather
stage, they can terminate at the same round if they wait until all good agents finish the CollectID
stage (and the next Gather stage). To do this, we can use the fact that, when good agent ai
finishes the CollectID stage, ai.L contains IDs of all good agents. That is, max(ai.L) is the upper
bound of IDs of good agents and hence, ai can compute the upper bound of rounds required for all
good agents to finish the CollectID stage. However, for two good agents ai and aj , max(ai.L)
can be different from max(aj .L) because it is possible that either ai or aj meets a Byzantine agent
with an ID larger than the largest ID among good agents. Also, if agents share their variable L and
take the maximum ID, Byzantine agents may share a very large ID such that no agent has the ID.
To overcome this problem, each agent ai selects the largest ID among IDs that ai.F +1 agents have
in their variable L, and computes when to terminate. Note that, in order that all good agents agree
on the largest ID, they should have the same value of F . For this reason, each agent ai updates
ai.F similarly to the MakeGroup stage after it completes the previous algorithm. Since all good
agents in a reliable group exist on the gathering node, ai can correctly update ai.F .

Lastly, to terminate at the same round, good agents make a consensus on termination. To
do this, each agent ai prepares a flag ai.f lagt (initially, ai.f lagt ← False). Agent ai executes
ai.f lagt ← True if it is ready to terminate, i.e., it understands that all good agents gather on the
current node. After ai completes the previous algorithm, it also checks flagt of all agents on the
current node every round. If flagt of at least ai.F + 1 agents are true, ai terminates the algorithm
because at least one good agent understands that all good agents gather on the current node. Since
all good agents stay at the same node and make the decision based on the same information, they
can terminate at the same round.

In this paragraph, we describe the detailed behavior of ai in the algorithm. First, ai executes
the previous algorithm until just before it terminates, but it does not terminate. Let round ri be
the round immediately after ai completes the previous algorithm. After round ri, ai waits on the
gathering node of the previous algorithm, say v, and always checks whether it can terminate. More
concretely, ai executes the following operations every round after round ri.

1. Agent ai updates ai.F in the same way as in the MakeGroup stage of the previous algorithm,
that is, ai assigns the most frequent value of f̃ to ai.F . If multiple values are the most frequent,
ai chooses the smallest one.

2. Agent ai checks flagt of agents on v, and, if flagt of at least ai.F + 1 agents are true, ai
terminates the algorithm.

3. Agent ai checks variable L of agents on v and computes the maximum ID among agents. That
is, letting Lg be a set of IDs that at least ai.F + 1 agents on v have in their variable L, ai
executes ai.IDmax ← max(Lg).

4. Agent ai checks whether all good agents gather on v. If all good agents have completed the
CollectID stage before round ri, all good agents gather on v before round ri +XN because
all agents wake up within XN rounds. Consider the case that some good agent has not yet
completed the CollectID stage in round ri. Since a reliable group has already been created,
if the agent with ID ai.IDmax has finished the CollectID stage and its next two phases
of the Gather stage, ai understands that all good agents gather on v. Note that the agent
with ID ai.IDmax completes the CollectID stage and its next two phases of the Gather

13

stage in at most T = XN +XN +3(2⌊log(ai.IDmax)⌋+6)(3XN +1) rounds after ai starts the
algorithm. For this reason, ai sets ai.f lagt ← True if (a) XN rounds have elapsed after round
ri and (b) T rounds have elapsed after it starts the algorithm.

Theorem 4.1. Let n be the number of nodes, k be the number of agents, f be the number of
Byzantine agents, and Λall be the largest ID among all agents. If the upper bound N of n is given
to agents and (4f + 4)(f + 1) ≤ k holds, the proposed algorithm solves the gathering problem with
simultaneous termination in at most 3XN + 3(2⌊log Λall⌋+ f + 7)(3XN + 1) + 1 rounds.

5 Conclusion

In this paper, we have developed two algorithms that achieve the gathering in weakly Byzantine
environments. We proposed two algorithms that reduce the time complexity compared to the ex-
isting algorithm by assuming a strong team of agents. The proposed algorithms operate under
the assumption that the upper bound N of the number of nodes is given to agents, and at least
(4f + 4)(f + 1) good agents exist in the network, where f is the number of Byzantine agents. The
first algorithm achieves the gathering with non-simultaneous termination in O((f + |Λgood|) ·X(N))
rounds, where |Λgood| is the length of the largest ID among good agents and X(N) is the number
of rounds required to explore any network composed of at most N nodes. The second algorithm
achieves the gathering with simultaneous termination in O((f + |Λall|) ·X(N)) rounds, where |Λall|
is the length of the largest ID among agents.

As future work, it would be interesting to study the trade-off between the time complexity and
the ratio of good and Byzantine agents.

References

[1] Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini, Giuseppe Prencipe, and
Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in Moving
and Computing, pages 423–454. 2019.

[2] Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering Despite Mischief. ACM Trans-
actions on Algorithms, 11(1):1–28, 2014.

[3] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gathering in
networks. Distributed Computing, 29(6):435–457, 2016.

[4] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial
time. In ICALP, pages 147:1–147:15, 2018.

[5] T.C. Schelling. The Strategy of Conflict. Harvard University Press, 1960.

[6] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69–96, 2006.

[7] Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141–156, 2008.

[8] Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts and strongly uni-
versal exploration sequences. In SODA, pages 599–608, 2007.

[9] Avery Miller and Andrzej Pelc. Time versus cost tradeoffs for deterministic rendezvous in
networks. Distributed Computing, 29(1):51–64, 2016.

[10] Pierre Fraigniaud and Andrzej Pelc. Deterministic rendezvous in trees with little memory. In
DISC, pages 242–256, 2008.

14

[11] Pierre Fraigniaud and Andrzej Pelc. Delays induce an exponential memory gap for rendezvous
in trees. ACM Trans. Algorithms, 9(2):17:1–17:24, 2013.

[12] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Computing, 25(2):165–178, 2012.

[13] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc, and Ugo
Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci., 355(3):315–
326, 2006.

[14] Samuel Guilbault and Andrzej Pelc. Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci., 509:86–96, 2013.

[15] Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asynchronously at polyno-
mial cost. SIAM J. Comput., 44(3):844–867, 2015.

[16] Evangelos Kranakis, Danny Krizanc, Euripides Markou, Aris Pagourtzis, and Felipe Ramı́rez.
Different speeds suffice for rendezvous of two agents on arbitrary graphs. In SOFSEM, pages
79–90, 2017.

[17] Jurek Czyzowicz, Andrzej Pelc, and Arnaud Labourel. How to meet asynchronously (almost)
everywhere. ACM Trans. Algorithms, 8(4):37:1–37:14, 2012.

[18] Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, and Arnaud Labourel.
Almost optimal asynchronous rendezvous in infinite multidimensional grids. In DISC, pages
297–311, 2010.

[19] Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, and Arnaud Labourel. Tell me where I am
so I can meet you sooner. In ICALP, pages 502–514, 2010.

[20] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant gathering of mo-
bile agents in arbitrary networks with authenticated whiteboards. IEICE Transactions, 101-
D(3):602–610, 2018.

[21] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Gathering of mobile agents in asyn-
chronous byzantine environments with authenticated whiteboards. In NETYS, pages 85–99,
2018.

[22] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.

15

