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A method of Parallelizing Consensuses for Accelerating
Byzantine Fault Tolerance

Junya Nakamura, Tadashi Araragi, Toshimitsu Masuzawa, and Shigeru Masuyama

Abstract

We propose a new method that accelerates asynchronous
Byzantine Fault Tolerant (BFT) protocols designed on the
principle of state machine replication. State machine repli-
cation protocols ensure consistency among replicas by ap-
plying operations in the same order to all of them. A naive
way to determine the application order of the operations
is to repeatedly execute the BFT consensus to determine
the next executed operation, but this may introduce ineffi-
ciency caused by wait for the completion of the previous
execution of the consensus protocol. To reduce this inef-
ficiency, our method allows parallel execution of the con-
sensuses with keeping consistency of the consensus results
at the replicas. In this paper, we also prove the correctness
of our method and experimentally compare the existing
method in terms of latency and throughput. The evalua-
tion results show that our method makes a BFT protocol
three or four times faster than the existing one when some
machines or message transmissions are delayed.
Byzantine fault tolerance; asynchronous distributed sys-
tem; agreement; consensus; state machine replication;

1 Introduction

Byzantine failures, which have no restriction on behav-
ior of faulty machines, are the most malicious failures.
Such failures can model any kind of malfunction caused by
hardware faults, infection by a virus, intrusion of crackers
and so on. In the services provided on open networks like
the Internet, these failures cause serious damage, and thus,
robust fault tolerance against them is strongly demanded.

One of the most robust approaches for implementing
Byzantine fault tolerant services is state machine repli-
cation [1], where a server is modeled as a state machine
and replicated on different host machines. The behavior
of a state machine is determined by its current state and
the set of received messages. In the state machine repli-
cation of a server, some server replicas are arranged and
execute the same tasks to tolerate Byzantine faults. To
maintain consistency among the replicas, they communi-
cate with each other and agree on the order of processing
the received requests, which may arrive in different order
at different replicas. By processing the requests in an or-
der common to all the replicas, non-faulty server replicas

behave identically. Even if a minority of replicas malfunc-
tion and return wrong or forged results, clients receive the
same and correct results from a majority of replicas (or
non-faulty ones) and can ignore such wrong or forged re-
sults from the faulty replicas. Here, we assume that the
clients are non-faulty and multicast identical requests to
all the server replicas. Thus a main technical issue of state
machine replication is to develop a Byzantine consensus
protocol for achieving the above agreement in the pres-
ence of Byzantine faults.

This paper targets Byzantine fault tolerance for huge
distributed systems working on open networks like the In-
ternet. Such systems are generally asynchronous. That
is, we cannot guarantee that messages are received in ex-
pected time intervals after being sent. As is well known, no
deterministic Byzantine consensus protocol exists in asyn-
chronous systems [2]. There are two main approaches for
circumventing that impossibility. One is based on random-
ization [3, 4] and the other is based on a rotating coordi-
nator [5, 6]. Our acceleration method is based on the ran-
domization approach, which is less efficient but more ro-
bust than the coordinator approach and is suitable for open
networks.

In the randomization approach, randomized actions are
introduced to avoid critical damage from attackers. How-
ever, the approach is likely to be inefficient, since a number
of rounds must be repeated until the correct replicas reach
agreement. To improve efficiency, a request set agree-
ment is employed rather than an agreement on a sequential
number (the order to be processed) of each request. Once
agreement on a request set is achieved, the requests in the
set are processed in a predefined order (e.g., the order of
the IDs of the clients submitting requests) among them.
This request set agreement is repeated sequentially, and
all requests are arranged in a common order. However,
if some replicas work very slowly or some requests reach
very late, a request set agreement may take a long time,
which seriously delays the next invocation of the consen-
sus protocol. This paper presents a method of solving this
problem by parallelizing the request set agreements.

Next we will explain more details of the randomiza-
tion approach and the involved problem. Many random-
ized protocols based on request set agreement have been
already proposed [7, 8, 4, 9]. The consensus protocol is
invoked periodically with a given time interval, which is
measured by a local clock of each replica. When an exe-



cution of the protocol is finished by agreeing on a request
set, the requests in the set are arranged in a predefined or-
der. By this series of arrangements, all the requests are ar-
ranged in a common order among the replicas. At each in-
vocation of the consensus protocol, each replica proposes
a set of the requests that were received so far but not in-
cluded in the previous agreements. Of course, these pro-
posals can be different among the replicas because of the
delay of the request arrival or the machine behavior. But
the set agreement protocol guarantees that all non-faulty
replicas agree on a subset of the union of the request sets
proposed by non-faulty replicas.

The length of the local time interval between invoca-
tions of the set agreement affects the efficiency, but it is
difficult to decide a suitable one. If it is short, the num-
ber of invocations of the consensus protocol will increase.
If it is long, requests have to wait long for the invocation
of the agreement protocol, and the agreement may take a
long time because the size of the proposal grows. When
an execution of the consensus protocol does not terminate
within the local time interval, a big delay might occur. In
this case, the invocation of the consensus protocol is kept
waiting until the termination of the previous consensus,
even if the local time interval passes, to prevent incon-
sistency of the total order of requests among the replicas.
Such blocking of the invocation makes the following in-
vocations of agreement move backward. As a result, the
number of unprocessed requests grows and the efficiency
of the replication method is reduced. When request ar-
rivals or machine behaviors are delayed, the validity check
becomes very time consuming in the agreement, and the
termination is easily delayed over the local time interval.
Here, the validity check is a process in the agreement for
excluding forged requests.

1.1 Contributions

To solve the above problem, we introduce a method that
parallelizes the agreement so that executions of the set
consensus protocol are not blocked by delayed requests
or machines. Our experimental results show that our par-
allelization method greatly improves the efficiency com-
pared with a sequential method, especially three or four
times faster when some requests are delayed or some repli-
cas work slowly.
We solved the following two technical issues:

Safety problem: The parallel executions of the set con-
sensus protocol may terminate in different orders among
the replicas. For example, on one replica, the execution of
the agreement initiated first terminates after the one initi-
ated second, and on another replica, the one initiated first
terminates first. When the replicas are restricted to pro-
cess the requests in the invocation order of the agreements,
they have to wait until the delayed agreement is completed,
which may reduce the efficiency achieved by paralleliza-
tion. Therefore, we have to consistently arrange the out-

puts (or request sets) of the parallel executions among the
replicas.

Liveness problem: A request contained in the proposal
made by a replica is not necessarily included in the output
of the corresponding agreement. Therefore, to guarantee
the liveness that a request is eventually processed, a replica
has to keep proposing the request until it is included in an
output of the agreements. Therefore, a request that delays
agreement can commonly be included in the proposals of
the parallel executions of the agreement. This reduces the
positive effects of parallelization.

To solve the safety problem, we introduce another
agreement process in the replication protocol that identi-
cally arranges the output of the parallel executions among
the replicas. We show that this additional agreement’s
overhead is small by experimentally evaluating the perfor-
mance.

To solve the liveness problem, we introduce random-
ization to decide the proposals of each execution of the
consensus protocol. The requests in the proposal are cho-
sen randomly from the requests that have already been re-
ceived but have not been processed. A request that causes
a delay in a previous execution may be missed in this
choice, and a new execution can have no delay. We experi-
mentally show that this randomization brings a reasonable
advantage of response time.

1.2 Related work

As stated above, there are two main approaches for repli-
cations based on Byzantine agreement in asynchronous
distributed systems: randomization [3, 4] and a rotating
coordinator [5, 6].

In the rotating coordinator approach, a special replica (a
rotating coordinator) determines a sequence number (the
processing order) for each received request and announces
it to all the other replicas. Therefore, all the replicas can
process the requests in the same order and maintain con-
sistency.

If the coordinator is faulty, its role is taken over by an-
other replica. From the impossibility result of FLP [2], this
approach needs some assumptions on synchrony (weak
synchrony) to guarantee termination. On the other hand,
the randomization approach guarantees termination with
probability 1 and needs no additional assumption, and it is
more robust but less efficient.

Among the protocols in the coordinator approach, the
Castro-Liskov protocol [5] achieves very high perfor-
mance and is considered a practical replication method.
Under the above assumption, it terminates in a few rounds
and executions of the consensus protocol are executed in
parallel. Although the original Castro-Liskov protocol ex-
ecutes the consensus protocol for each request, it is not
hard to modify the protocol to allow each process to pro-
pose a request set like the randomization approach. How-
ever, parallel execution of the agreements for request sets



in the coordinate approach is essentially different from
that in the randomization approach. Actually, the modi-
fication of the Castro-Liskov protocol reduces the number
of agreement executions and, consequently improves effi-
ciency in ordinary situations. But it worsens when requests
or replicas are delayed. Because of the delay, a coordinator
is suspected to be faulty and coordinator alternation often
happens. At each alternation, a heavy load procedure must
be done to maintain this protocol’s integrity.

For the existing protocols in the randomization ap-
proach, to the best of our knowledge, our parallelization
proposal is the first.

1.3 Organization

This paper is organized as follows. The next section de-
fines the system model. State machine replication is de-
fined in Sect. 3. Section 4 briefly describes an exist-
ing replication approach using consensus protocols and
specifies what requirements such protocols must satisfy.
Our parallelizing method is proposed in Sect. 5, and Sect.
6 proves its correctness. The performance of our pro-
posed method is evaluated and compared with an existing
method to show its advantages in Sect. 7. Finally, Sect. 8
concludes this paper.

2 System Model

A distributed system consists of processes and communi-
cation links. We assume that the system is asynchronous,
i.e., no assumptions are made about the bounds of process-
ing time or communication delays. Every pair of processes
is directly connected by a communication link, and a pro-
cess can exchange information only by exchanging mes-
sages. We assume that communication links are reliable
channels, i.e., messages sent by correct processes must
eventually be received by the destination processes with-
out corruption or loss. A process can identify the sender
process of each delivered message, for example, by the
signature, and no process (even a malicious one) can im-
personate other processes when sending messages. A pro-
cess has a local clock, but it is not synchronized; clocks of
different processes may be running at different speeds.

Some processes may fail during the protocol execution.
Here, we adopt Byzantine failure (also called arbitrary fail-
ure) as a failure model. Byzantine failure allows processes
to arbitrarily deviate from protocol specifications, e.g., to
stop processing, omit messages, and send fabricated mes-
sages. A process is called faulty if its behavior deviates
from the protocol specification, otherwise it is called cor-
rect.

3 State Machine Replication

In state machine replication [1], a server is modeled by
a state machine, which is a process that, on receipt of a
message, changes its state and sends messages to other
processes (if necessary). The server’s role is replicated to
n replicas that independently operate the role on distinct
hosts and interact with clients by request and response
messages. A client submits a request to all replicas to
request the servers to execute certain commands. Even
though the arrival orders of the requests at different repli-
cas may differ because of differences in communication
delays, the replicas must process the requests in the same
order to keep consistency among the replicas.

More formally, a state machine replication method must
satisfy the following two requirements:

Safety All correct replicas process the requests submitted
by clients in the same order.

Liveness A client eventually accepts the response to any
request it submitted.

To realize identical processing order of requests, the
replicas execute a consensus protocol. After a replica pro-
cesses a request, it replies to the client with the execution
result. The client accepts the result when it receives the
same result from f + 1 replicas. Here f is the upper bound
of the number of faulty replicas. A client can confirm
that at least one correct result was received from a cor-
rect replica when it collects f + 1 identical results. Since n
must be greater than or equal to 3f + 1 to realize Byzantine
consensus by randomized protocols [10], we assume that
f<ln=1/3]

Figure 1 shows an example of state machine replica-
tion. There are two clients and four replicas, and the
clients broadcast requests 7; and r,. Since its network is
asynchronous, the arrival orders of the requests are dif-
ferent among the replicas who execute a Byzantine con-
sensus protocol to agree with the processing order of the
requests. As a result, the replicas agree with processing
order r; — rp, process the requests in the order, and send
their responses to the clients.

4 Replication by Request Set Con-
sensus (RSC)

We introduce a state machine replication method based on
Byzantine consensus on a set of requests (called request
set consensus (RSC)), which is commonly used in repli-
cations in completely asynchronous distributed systems to
accelerate replication execution.

In this replication method, a replica periodically initi-
ates RSC with a predefined interval. We denote the se-
quence of RSC executions by RSC',RSC?,---. A replica
maintains the arrived request set to store the set of the



Request r, Response of r, time

Client 1 k 7\ 44/

Client 2

Replica 1 Byz. Consensus [EX

Replica 2 Byz. Consensus — |EX

Byz. Consensus [EX

.

EX: execution of requests

Replica 3

Replica 4 Byz. Consensus

(Byzantine)

Figure 1: Example of state machine replication

requests that have already been received but have not yet
been processed; a request is added to the set when it is
received, and it is removed when it is processed. When
a replica initiates RSC*, its proposal is the set of the re-
quests stored in the arrived request set. Let the output (a
set of requests) of RSC* be V. Requests are processed in
the order of Vi, V>, ..., and the requests in each V; are seri-
alized in a deterministic order shared among the replicas.
In the existing methods, the initiation of RSC**! must be
delayed until RSC* is finished to maintain the consistency
of the processing order of requests, even if it passes the
scheduled initiation time of RSC**! (Initiation Condition).

To ensure the safety and liveness requirements for state
machine replication, the RSC protocol must satisfy the fol-
lowing requirements. Hereafter we denote an execution of
RSC' at a replica with proposal v by RSC'(v) or RSC' if the
proposal does not matter.

RSC agreement No distinct correct replicas output dif-
ferent sets of requests.

RSC validity The output set is a subset of the union of
the proposals of all correct replicas.

RSC termination Every correct replica eventually out-
puts a set of requests.

RSC integrity A request contained in the proposals of all
correct replicas is also contained in the output.

RSC agreement, validity, and termination are standard re-
quirements for Byzantine consensus protocols. RSC in-
tegrity suffices to guarantee the liveness requirement of
state machine replication.

Figure 2 illustrates replication behavior using RSC.
There are four replicas, and replica 4 fails. The replicas
initiate the i th execution of RSC with the proposals of
the arrived request sets. Since the system is asynchronous,
the arrival orders of the requests may be different among
the replicas and the RSC’ proposals may be different. Ac-
tually, in the example, replica 1 proposes {ri,r, 74} and
replica 2 proposes {r,} for RSC'. Faulty replica 4 makes

r I, time

Replica 1 RSCH({ry, 15, 1))

ars ={ry, r,, 1,} Vi ={ry, 15, 13}, ars = {rg}

r
Replica 2 4\‘—{2 RSC! ({r,}) >
ars ={r,} Vi={r, ryrhars={}

r

Replica 3 2 RSCI ({1, Ta})
ars ={r,, r3}  V;={r,, 1,, r3}, ars = {r}
Replica 4 RSC! ({rs}h)
(Byzantine)

Figure 2: Example of replication by Request Set Consen-
sus (RSC)

forged request s. When RSC' is finished, the replicas ob-
tain common request set V; = {ry,r,r3} as an agreed on
value. Although the contents of the agreed set depend on
the message delivery and process execution schedules, r,
must be contained in the agreed set by RSC integrity. On
the other hand, RSC validity guarantees that forged request
rs is not contained in the agreed set. Arrived request set
ars of each replica is modified by removing the requests
in this agreed set.

5 Parallelizing Executions of RSC

5.1 Problem with parallelization

Executions of existing replication methods can be very
slow due to the initiation condition mentioned in Sect. 4,
especially when the behaviors of some replicas are delayed
or requests reach some replicas late. One idea to improve
the efficiency of the replication method is parallelizing the
executions of RSC by consistently removing the initiation
condition. To achieve this, we have to solve the following
two problems.

Safety problem: Since the delays of the communication
links among replicas and clients are different from each
other in asynchronous systems, the order of finishing the
RSC executed in parallel can be different among the repli-
cas. In Fig. 3, replica p finishes RSC! first, while replica
g finishes RSC? first. If a replica immediately executes re-
quests after the agreements, then the processing orders of
the requests are not the same among replicas p and ¢, and
the safety condition is not guaranteed.

This problem can be simply resolved by waiting for the
terminations of all RSC’ (j < i) before processing V;.
However, the method can cause great overhead (Fig. 3),
where replica ¢ has to wait for the termination of RSC' to
process V. If a RSC takes a long time, all requests already
agreed by the following RSCs have to wait to be processed
until the previous RSC is terminated.

Liveness problem: Even if we reduce the overhead of
waiting for the termination of other RSC executions, in-
efficiency remains, caused by the delayed replicas or the
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V;={r}
) [ RSC! [EX]
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V2 = {rz} EX: execution of requests

Figure 3: Invalid parallel executions of RSC

Replica RSCL [UE]EX]| time
piicap RSC? EX

1
Replica g |_RSC' IIUIEX]

[ Rrscz  [OVEEX

EX: execution of requests
Figure 4: Execution of our proposed parallelizing method

delayed requests. A request included in a proposal may
not be included in the output. Therefore, the replica must
keep proposing the request until it is included in an out-
put of RSC to guarantee the liveness requirement for state
machine replication.

In such a naive parallelization, the proposal of RSC/*! is
likely to contain a request in that of RSC’. However, if the
request is greatly delayed for some replicas, the validity
check in the protocol commonly takes a long time for both
executions RSC’ and RSC/*!. Therefore, a few delayed
requests may cause big delays in the parallel execution of
RSC.

5.2 Our approach

To solve the safety problem, we introduce a multi-valued
consensus (MVC) in the parallelization. When an execu-
tion of RSC’ is finished in a replica with output rs j» the
replica initiates MVC with proposal (j,rs;) (Fig. 4). If
MVC outputs agreed value (id, rs;z), the replicas process
the requests in rs;; in an arbitrary predefined order. All
correct replicas clearly process the same requests in the
same order. Note that MVC is itself executed sequentially
on each replica. An important point of this method is that
the replica does not have to wait for the termination of
RSC' (i < id). In addition, even if RSC* has not finished
at the replica, it can process the requests in 7s;; since the
replica can learn the requests from the MVC output.

To solve the liveness problem, we introduce randomiza-
tion for deciding the proposal. We decide the RSC pro-
posal by probabilistically choosing requests from the set
of requests already received but not yet processed. With
this simple modification, we can decrease the probability
that the terminations of successive RSCs executed in par-
allel are delayed by the same request. At the same time, we
can guarantee the liveness requirement with probability 1.

5.3 Multi-valued consensus protocol

We show the requirements for the multi-valued consen-
sus protocol used to determine the request set to be pro-
cessed first. The MVC proposal at a correct replica is a
pair of ID of a terminated RSC execution and its agreed re-
quest set. The MVC protocol is, of course, the randomized
protocol, because the targeted distributed system is asyn-
chronous. The MVC protocol must satisfy the following
requirements:

MVC agreement No distinct correct processes output
different values.

MVC validity If the proposals of all correct processes are
the same, the agreed value is the proposal.

MVC termination Every correct process eventually out-
puts an agreed value.

MVC extra validity The output of a correct process must
be a proposal of some correct process.

MVC agreement, validity, and termination are the com-
mon requirements for MVC in general. MV C extra validity
speeds up state machine replication while avoiding forged
requests, which is explained in Sect. 5.4. MVC extra va-
lidity is feasible using a signature scheme on an existing
MVC protocol. Each replica repeatedly executes MVC,
and we denote the i th execution of MVC by MV C".

5.4 Protocol

Our proposed parallelizing method is shown in Protocol 1.
The value of input_rs is a set of requests, which is given to
RSC as a proposal. The value of old_rs is a set of requests
that were received before the last RSC initiation and re-
main unprocessed. The value of new_rs is a set of requests
that were received after the last RSC initiation. The value
of agreed_rs is a set of requests that belong to RSC out-
put. rsc_id_queue is a queue of pairs (j,rs;) of RSC ID j
and agreed set rs; output by the execution of the RSC with
ID j, whose element is a proposal of MVC. wait_queue is
a queue of agreed request sets, and a thread T,ocess Pro-
cesses them in order. muc_id is a counter that gives a se-
quence number to each execution of MVC, allowing repli-
cas to recognize a common execution of MVC.

We assume that each replica has its own special sched-
uler PS, which employs a local clock of the replica. PS
periodically outputs positive integers 0, 1, 2, .. .1in this or-
der with a predefined interval. When PS outputs number
k, the replica initiates the k th execution of RSC with ID k.
The shorter the PS interval is, the more frequently RSC is
initiated.

A replica initiates MVC with a proposal of a pair of an
RSC ID and its agreed set. If MVC/ outputs the agreed
value (id, V), the replica processes V at the j th turn. The
MVC proposal includes the corresponding agreed set as



well as the RSC ID to improve the efficiency. If the pro-
posal is only RSC ID, when MVC outputs RSC ID id and
the replica has not finished the execution of the RSC of
id, it has to wait for the termination of the RSC before
processing the requests in the agreed set. With the agreed
value in the output of MVC and MVC extra validity, which
means that the agreed value is not forged, a replica can
process the correct request set immediately after the MVC
outputs.

Our method starts from initialization in which a replica
creates a new thread T,rocess- T process dequeues a request
set from wait_queue and processes the elements in a deter-
ministic order shared with all replicas.

Our protocol has four when clauses:

e When a new request arrives from a client, it is added
to new_rs.

e When scheduler PS outputs value j, first, the already
agreed requests are removed from old_rs and new_rs,
and the proposal for a new RSC is calculated using
given function choose, which randomly selects re-
quests from its input old_rs and new_rs in a prede-
fined manner. Then a new RSC with ID j is initiated,
and the elements in new_rs are moved to old_rs.

e When an RSC execution with ID id is finished
with output rs, a replica updates agreed_rs and en-
queues a pair (id, rs) to rsc_id_queue if id is not in
agreed_rsc_id. If a previously invoked MVC is run-
ning, it waits for the termination. Then the replica
chooses the first element, a pair of an RSC ID and
an agreed set (id’,rs’) from rsc_id_queue (without
deleting it from the queue), initiates a new MVC with
ID muc_id with proposal (id’, rs") and increments the
value of muc_id.

e When MVC outputs value (id,rs), a replica re-
moves the pair whose first element is id from
rsc_id_queue and enqueues rs into wait_queue and id
into agreed_rsc_id.

6 Correctness

We prove that our proposed protocol, which parallelizes
RSC in state machine replication, satisfies the safety and
liveness requirements of state machine replication.

Safety We have to show that requests are processed in
the same order among the non-faulty replicas and that no
forged requests are included in them.

To show that requests are processed in the same order,
it is sufficient to show that RSC outputs are enqueued to
wait_queue in the same order among the replicas under
RSC agreement since thread T _process processes the re-
quests in the order in which they are stored in wait_queue

Algorithm 1 Proposed parallelizing method
1: Variables

2:  input_rs := 0; {input of RSC}

3: old_rs := 0; {requests received before the last RSC}

4: new_rs := 0; {requests received after the last RSC}

5:  agreed._rs = 0; {agreed requests}

6:  agreed_rsc_id := 0; {RSC IDs agreed by MVC}

7:  prs = 0; {processed requests}

8: moc_id := 1; {counter for MVC IDs}

9:  rsc.id_queue := empty; {queue of pairs of RSC ID and a set of
requests }

10:  wait_queue := empty; {queue of agreed sets waiting to be pro-

cessed}

11: Initialization

12: start task T processs

13: When a request r arrives do

14: new_rs := new_rs U {r};

15: When PS outputs j do

16: old_rs := old_rs \ agreed_rs;

17: new-rs := new-rs \ agreed_rs;

18: input_rs := choose(old_rs, new_rs);
19: invoke RSC/ (input_rs);

20: old_rs := old_rs U new_rs;,

21:  new-rs := 0,

22: When RSC™ outputs its agreed value rs do
23:  agreed_rs := agreed_rs U rs

24:  if id ¢ agreed_rsc_id then

25: enqueue (id, rs) into rsc_id_queue;

26:  if MVC is running then

27: wait until it terminates;

28: let (id’, rs’) be the first element of rsc_id_queue;
20: invoke MVC™<id(id’ rs');

30: mocid = mocid + 1;

31: When MVC' outputs its agreed value (id, rs) do
32:  if rsc_id_queue contains (id, ) then

33: remove (id, ) from rsc_id_queue;

34:  enqueue rs into wait_queue;

35:  agreed_rsc.id := agreed_rsc_id U {id};

36: Task Tprocess

37:  loop

38: wait until wait_queue is not empty;

39: dequeue rs from wait_queue;

40: for all r € (rs\ prs) in some deterministic order do
41: execute r and send the result to the client;

42: prs:=prsurs;

(line 39). On the other hand, enqueuing is executed only
in the event of MVC output, and MVC is executed sequen-
tially (lines 26-30), and then the desired result follows
from the MVC agreement. A non-forged requirement im-
mediately follows from RSC validity and MVC extra va-
lidity. O

Liveness Assume that there exists a request rq that has
never been processed. Such a request is eventually deliv-
ered to all correct replicas and stored in their new_rs or
old_rs. Hence, there must be an RSC execution with some
probability in which every correct replica contains rq in
its proposal. Let the ID of the execution be k. By RSC
termination, the execution must terminate, and by RSC in-
tegrity, agreed set V; must contain rq. Then every correct
replica enqueues (k, V) into rsc_id_queue. Assume that
(k, Vi) has never been chosen as an output of any MVC
execution. rsc_id_queue is a queue, so if (k, V) is not re-



moved for a long time, (k, Vi) moves to the front of the
rsc_id_queue. If the front of the rsc_id_queue of every cor-
rect replica gets (k, Vi), by MVC validity, the agreed value
of the next MVC execution must be (k, V), and the ex-
ecution must terminate by MVC termination. Therefore,
request rq is eventually processed and contradicts the as-
sumption. O

7 Performance Evaluation

In this section, we experimentally compare the perfor-
mance of state machine replication employing our pro-
posed parallelizing method with an existing one based on
sequential agreements. In particular, we show how the de-
lay of request message delivery and machine behavior af-
fects the response time of the requests. We also evaluate
the throughput of the two methods in ordinary and delayed
situations.

7.1 Experiment environment

For our experiments, we use five machines completely
connected by one network switch. On each of four ma-
chines, a replica is running individually. On the other ma-
chine, several clients are simulated, and their requests are
issued from it. The machines have a Core i3 540 3.07 GHz
CPU and 2 GB RAM and run Linux 2.6.18. The network
is 1 Gbps LAN. In experiments of performance evalua-
tion, we did not model Byzantine failure because it has
thousands of varieties and seldom occurs.

Through the experiments, we fix the choose function so
that it uniformly chooses every element as an element of
a proposal with 0.25 probability. This value is empirically
preferable for the parallelization as shown in Sect. 7.2.2.

We used the RSA protocol proposed in [9, 11] as an un-
derlying RSC protocol and the M_V_Consensus protocol
proposed in [7] as the MVC protocol. These protocols and
our proposed parallelizing method were implemented by
C++ language with POSIX socket library for the evalua-
tion. Note that the M_V_Consensus protocol may output
a special value, L, which is different from any proposed
value. To cope with this exceptional value, we slightly
modified our protocol. When this value is output, we rein-
voke M_V _Consensus protocol with a different proposal:
the element of rsc_id_queue whose RSC ID is the small-
est. If the repetition of this reinovocation continues, the
proposals finally coincide among the replicas, and the in-
vocation terminates by outputting the proposal of a normal
value by the M_V_Consensus property stated in Theorem
3 in [7]. Then, the repetition is finished.

7.2 Latency
7.2.1 Evaluation model

From the machine that simulates clients, 50 requests are
multicast to the replicas in total. Let 7y, r,,..., 750 be the
requests issued from the clients. To realize delayed de-
livery of the requests, we change the order of sending the
requests. For example, if the delivery of request r; is de-
layed for replica R;, we send the requests to the replicas
other than R in the order r, 1y, ..., rso and the requests to
R, inthe order ry,73,...,r5, 71,2, ..., so. To realize de-
layed behavior of the replicas, we delay the timing to start
sending the requests to replicas. For example, if the behav-
ior of replica R, is delayed, we start sending the requests
to R, after sending 25 requests to the other replicas.

We introduce the following parameters and values to
configure this model:

#d_req: number of delayed requests whose values are
{1,2,3}.

#d_rcv: number of machines that receive delayed re-
quests. Their values are {2*,3*}, where we attach “*”
to distinguish them from the values of #d_req.

ed_req: extent of how much requests are delayed. The
values are {middle, end}, in short, {m, e}.

ed_mac: extent of how much a machine’s behavior is de-
layed. The values are {0%, 50%, 100%}.

The values, middle and end, of ed_req mean that the first
requests are moved backward to the middle and to the end
of the order of the sequence of requests, respectively. For
example, if #d_req = 2 and ed_req = middle, r| and r, are
moved between 7,5 and 6, and if ed_req = end, they are
moved after rso. We assume that at most one machine can
be delayed, which is called a delayed replica. The value
of 0% of ed_mac means that there is no machine delay.
50% and 100% mean that the sending of the requests to
the delayed replica starts when the sending of the requests
for the other machines has progressed 50% and 100%, re-
spectively. Machine delay ed_mac implies delays of all
the requests, and request delay ed_req does delay some
requests.

Each request is issued to a replica every 100 ms. The
local time interval for invoking RSC is 100 ms. For each
combination of the parameter values, we execute the ex-
periments 50 times and average the response times. The
response time of a request is the time from sending it until
receiving the same results from f + 1 replicas.

7.2.2 Experimental results and analysis

The average response times of the sequential and parallel
executions for each parameter configuration are shown in
Fig. 5. On the horizontal axis, each configuration is de-
picted in the form x1-x2-x3-x4, meaning that the values
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Figure 5: Results for individual parameter configurations

of ed_mac, #d_rcv, #d_req, and ed_req are x1, x2, x3, and
x4, respectively. On the vertical axis, the average response
times are measured in the ratio to the average response
time of the sequential executions with no delay of the de-
livery of requests or the behavior of replicas.

We clearly observed that at configurations of #d_rcv =
3* and ed_req = end, (i.e., when the number of replicas
receiving delayed requests is large and these requests ar-
rive very late, the peaks were marked with j in Fig. 5), the
response time of the sequential executions is 150 or 200
times longer than the no delay case, and the efficiency be-
comes very low. On the other hand, the response time of
the parallel executions is at most around 50 times longer
than the no delay case. Especially, when the efficiency
of the sequential executions is terrible, the good effect of
parallel executions is remarkable for the following reason.
Multiple replicas that receive many delayed requests can-
not indirectly verify the validity of the requests received
from other replicas until they receive them directly from
clients. This greatly delays the termination of the involved
agreement and shifts the following agreements afterward.
However, in parallel executions, a new RSC can be started
without waiting for termination of the agreement, and the
delayed messages have no effect on the following agree-
ments.

Although at configurations of 50-1-3*-e or 100-1-3*-e
the efficiency of the parallel executions is worse than that
of the sequential executions, the difference is small. This
means that the overhead of additional MVC in parallel ex-
ecutions does not have much effect on the whole response
time.

Next we focus on the randomization of the RSC pro-
posal. Fig. 6 shows the average response times of paral-
lel executions with different probabilities employed in the
choose function: 0.25, 0.5, and 1.0. The case of proba-
bility 1.0 corresponds to the naive approach without ran-
domization in RSC proposals. As we presumed, the re-
sponse time is almost the same as the sequential execu-
tions, and no advantage of parallelization appears. On the

other hand, probabilities 0.25 and 0.5 equally and posi-
tively affect parallelization, proving the usefulness of our
idea of randomization.

7.3 Throughput

We conduct experiments on throughput to evaluate the
amount of resource consumption by parallelization. First,
we explain how we evaluate the throughput because rea-
sonably evaluating throughput is a subtle problem at loads
exceeding the resource bound of systems. To evaluate the
throughput at a given load of request frequency, we ex-
ecute the protocol for 25 seconds at the load. Here, re-
quest frequency means the number of requests received
by a replica every second. Then we divide the execution
into five successive sections of five-second long intervals.
For each section, we calculate the number of processed
requests and divide it by five seconds to obtain a tenta-
tive throughput value. Finally we choose the maximum
value among the five tentative throughput values as the
throughput value at the load. If the load does not exceed
the resource bound, then the tentative throughput value in-
creases and becomes stable. On the other hand, if it ex-
ceeds the resource bound, the value first increases and then
decreases. Thus, we choose the maximum of the tentative
values to commonly characterize the throughput value for
both cases. The result for each request frequency listed
below is an average value of ten executions. Through the
experiments, there is no delay on the delivery of requests
or the behavior of replicas, because controlling the delay
is difficult in heavy loads.

In the throughput graph, the request frequency at which
the throughput peaks corresponds to the load where the
system reaches the resource bound. By our calculation,
the angle of inclination after the peak shows how fast
the resource will be exhausted after reaching the resource
bound. A larger angle means faster exhaustion.

In Figs. 7 and 8, we show the throughput of the se-
quential and parallel executions. In Fig. 7, parallel exe-
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cutions are controlled by restricting the number of paral-
lel agreements at a time, denoted by #para. For exam-
ple, #para = 2 means that if two RSC are being executed
in parallel and timing for a new RSC is being invoked,
the invocation must wait until one of the executions is
terminated. In Fig. 8, we add another restriction on the
frequency of the parallel executions of RSC, denoted by
freq. For example, #para = 2 and freq = 5 mean that
if two RSCs are executed in parallel and one terminates,
parallel RSC execution is not allowed until five newly in-
voked sequential executions of RSC have been completed.

In Fig. 7, when the value of #para is large, the paral-
lel execution reaches the resource bound with a smaller
load. At loads that fail to reach the resource bound, par-
allel executions show the same throughput values as the
sequential execution. At loads beyond the resource bound,
parallel executions exhaust the resource more rapidly. On
the other hand, in Fig. 8, if we control the frequency of
the parallel executions of RSC, the resource consumption
is greatly reduced for #para = 2. Especially if freq = 10,
the execution reaches the resource bound at the same load
as the sequential execution and the speed of exhausting the
resource is not so different from the sequential one at loads
beyond the resource bound.

From these observations, we conclude that parallel exe-
cutions consume resources in proportion to the number of
consensus protocol instances executed in parallel. When
we restrict the number, the executions still exhaust the
resources rapidly when the load exceeds the bound, and
the speed slows down when we restrict the frequency of
RSC because time is required for parallel executions to
release the resource. For the practical use of the paralleliz-
ing method, when the load is heavy, we should dynami-
cally control the number of parallel executions and their
frequency to avoid resource exhaustion.
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Figure 7: Throughput in restriction on number of parallel
RSC executions. Para(x) means “Parallel execution with
#para = x”.

8 Conclusion

In this paper, we proposed a method to accelerate state
machine replication for Byzantine fault tolerance by paral-
lelizing the executions of request set consensus and adding
an extra multi-valued consensus for deciding the process-
ing order of agreed sets. We also show the correctness of
the protocol for parallelizing agreements. Parallelization
has a good advantage in spite of an additional agreement,
especially when some replicas work slowly or some re-
quests are delivered late. We showed this property by an
experimental evaluation. In this evaluation, our paralleliz-
ing method accelerates the latency of replication three or
four times more than the existing sequential method in de-
layed situations.
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Fast Hough Transform Using DSP blocks and block RAMs on the FPGA
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Abstract—Since FPGA chips maintain relatively low price
and its programmable features, it is widely used in those
fields which need to update architecture or functions frequently
such as communication and education areas. Especially, in
mobile devices that recently require the ability to perform
computation such as real-time image processing, FPGAs are
promising devices. The main contribution of this paper is to
present a new FPGA architecture for the Hough transform
that identifies straight lines in a binary image. Recent FPGAs
have hundreds of embedded DSP blocks and block RAMs.
For example, Xilinx Virtex-6 Family FPGAs have a DSP48E1
block, which is a configurable logic block equipped with fast
multipliers, adders, pipeline registers, and so on. They also have
a dual-port memory with 18Kbits as a block RAM. One of the
most important key techniques for accelerating computation
using FPGAs is an efficient usage of DSP blocks and block
RAMs. Our new architecture for the Hough transform uses
178 DSP48E1 blocks and 180 block RAMs with 18Kbits that
work in parallel. As far as we know, there is no previously
published work that fully utilizes DSP blocks and block RAMs
for the Hough transform. Roughly speaking, a conventional
sequential implementation performs 180m voting operations
for m edge points. Our architecture performs voting operations
in parallel, and outputs identified straight lines in m 497 clock
cycles. Since 180m voting operations are performed using 178
DSP48E1 blocks, the lower bound of the computing time is m
clock cycles. Hence our implementation is close to optimal. The
implementation results show that the Hough transform for a
512 x 512 image with 33232 edge points can be done in only
135.75us.

Keywords-Image processing, Line detection, Hough trans-
form, FPGA, Embedded DSP blocks, Embedded block RAMs

I. INTRODUCTION

A Field Programmable Array (FPGA) is a programmable
logic device designed to be configured by the customer or
designer by hardware description language after manufac-
turing. The most common FPGA architecture consists of an
array of logic blocks, I/O pads, block RAMs and routing
channels. Furthermore, recent FPGAs have embedded DSP
blocks that make a higher performance and a broader
application.

The Xilinx Virtex-6 series FPGAs have DSP48E1 blocks
that are equipped with a multiplier, adders, logic operators,
etc [1]. More specifically, the DSP48E1 block has a two-
input multiplier followed by multiplexers and a three input
adder/subtractor/accumulator. The DSP48E1 multiplier can
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perform multiplication of an 18bit and a 25bit two’s com-
plement numbers and produces one 48bit two’s complement
production. Programmable pipelining of input operands,
intermediate products, and accumulator outputs enhances
throughput and improves frequency. The DSP48E1 also has
pipeline registers between operators to reduce the delay. The
block RAM in the Virtex-6 FPGA is an embedded memory
supporting synchronized read and write operations. In the
Virtex-6 FPGA, it can configured as a 36Kbit dual port
block RAMs, FIFOs, or two 18Kbit dual port RAMs. In
our architecture, it is used as a 1K x18bit dual port RAM.

Since FPGA chips maintain relatively low price and its
programmable features, it is widely used in those fields
which need to update architecture or functions frequently
such as communication and education areas. They are widely
used in consumer and industrial products for accelerating
processor intensive algorithms [2], [3], [4], [5], [6], [7], [8].

Recently, mobile devices increasingly require the ability to
perform computation that is performed on desktop platforms.
To support the embedded processors in mobile devices, FP-
GAs will be used to implement coprocessors for applications
such as signal processing, image processing, data encryp-
tion/decryption, etc. Especially, to perform real-time image
processing such as object tracking and augmented reality
with embedded video cameras, an FPGA is a promising
device on mobile devices in the future.

Hough transform is a technique to find shapes in im-
ages [9]. In particular, it has been utilized to extract lines,
circles, ellipses and arbitrary shapes. The Hough transform
defines a mapping from an image into a parameter space
represented by an accumulate array. The parameter space
is defined by parameterizing detected shapes. Based on
each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The
elements that are increased represent associated parameters
based on detected shapes. Therefore, the elements that are
voted intensively correspond to the parameters of shapes in
the image space.

The Hough transform can be used to extract straight lines
in a binary image [10]. The idea of this method is to exploit
the duality between points of a line and parameters of that
line. A point in the image is represented by a curve in
the parameter space and lines of collinear points intersect
in the parameter space at one point. These intersections



are counted in an array of accumulators that quantizes the
parameter space appropriately. In the followings, we call this
counting to the accumulators voting. More specifically, for
each edge point (x, y) in a 2-dimentional image, the voting is
performed along a curve p = z cos f+ysiné (0 < 6 < 180).
Possible lines can be detected by searching points that are
voted intensively. Figure 1 shows an example of straight
line detection using Hough transform. For an input image
(Figure 1(a)), the binary edge image (Figure 1(b)) is obtained
by the edge detector such as Sobel filter. The result of voting
to the parameter space is shown in Figure 2. In this figure,
darker points show points that are voted intensively, that is,
represent probable lines. According to the result of voting,
the principal lines are detected (Figure 1(c)).

Figure 2. Hough parameter space

The main contribution of this paper is to present a
new FPGA architecture for the Hough transform that fully
utilizes embedded DSP blocks and block RAMs. Our new
idea includes:

Voting Space Partitioning:

Polar coordinate voting space (6, p) is partitioned
and arranged into block RAMs. This enables us
to perform voting operations in parallel. Also, the
function of dual-port of block RAMs are fully used
to accumulate the voting value instantly.

Efficient Usage of DSP blocks:

DSP blocks are used to compute x cos 6 and y sin 6
in parallel for each edge pixel (z,y). We compute
xcosf and ysinf for 6§ such that 0 < 6 < 90
instead of computing them for 6 such that 0 <
f < 180. Also, we avoid the computation of the
values of cosf and sinf by pre-loading them in
the DSP blocks.

Fully Pipelined Architecture:

We take into account a layout of DSP blocks and
block RAMs in Virtex-6 FPGA architecture, and
design our Hough transform architecture as a fully
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pipelined one. For example, in the Virtex-6 FPGA
XC6VLX240T has 768 DSP48E1 blocks arranged
in 8 columns of 96 adjacent DSP48E1 blocks.
Neighboring DSP48E1 blocks are connected di-
rectly through pipeline registers. Our Hough trans-
form architecture uses 2 columns to compute
z cosf and ysin @ each, and uses a pipeline tech-
nique to maximize the clock frequency.

Using these ideas, our new architecture for the Hough
transform uses 178 DSP48E1 blocks and 180 block RAMs
with 18Kbits that work in parallel. One of the most important
key techniques for accelerating computation using FPGAs is
an efficient usage of DSP blocks and block RAMs. Never-
theless, as far as we know, there is no previously published
work that fully utilizes DSP blocks and block RAMs for the
Hough transform. Roughly speaking, a conventional sequen-
tial implementation performs 180m voting operations for m
edge points. Our architecture performs voting operations in
parallel, and outputs identified straight lines in m+ 97 clock
cycles. Since 180m voting operations are performed using
178 DSP48E1 blocks, the lower bound of the computing
time is m clock cycles. Hence our implementation is close
to optimal. We have implemented our new architecture on a
Virtex-6 family FPGA XC6VLX240T-1. The circuit runs in
245.519MHz and outputs identified straight lines in m + 97
cycles. For example, Figure 1 includes 33232 edge points.
Therefore, the circuit can perform the Hough transform in
135.75us.

Many hardware algorithms for FPGA implementation of
the Hough transform for lines have been proposed in past.
As far as we know, however, there is no published hardware
algorithm using embedded DSP blocks or multipliers in the
FPGA. In the existing researches, instead of circuits of mul-
tiplication with DSP blocks or multipliers, they introduced
incremental Hough transform [11], [12], [13], CORDIC [14],
[15], and hybrid-log arithmetic [16] to the computation of
Hough transform. Since most of recent FPGAs produced
by principal vendors equip embedded DSP blocks [17],
[18], [19], one of the most important key techniques for
accelerating computation using FPGAs is an efficient usage
of DSP blocks and block RAMs.

This paper is organized as follows. Section II introduces
the Hough transform algorithms for lines. We show the
FPGA architecture for the Hough transform in Section III.
Section IV shows the experimental results. Finally, Sec-
tion V concludes the paper.

II. HOUGH TRANSFORM

The main purpose of this section is to review Hough
transform algorithms for straight lines. Suppose that we have
an image of size n X n. We assume that n x n pixels are
arranged in two dimensional zy-space such that the origin
is in the center of the image as illustrated in Figure 3.
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(a) Input image

Figure 1.

N

(z,y)

3

(b) Binary edge image by Sobel filter

(c) Line detection using Hough transform

Example of straight line detection using Hough transform

S

(6, p)

180

Figure 3.

Hence, both coordinates z and y take integers in the range
[_% +1, %}

A pixel (z,y) (=5 +1 < 2,y < 3) in the xy-space
is converted to a curve in the fp-space by the following
formula:

p (0 < 6 < 180) (1)

Clearly, the double inequality —\% <p< l2 is satisfied.
The values of # and p can also be obtained geometrically.
Suppose that we draw a line going through the origin with
angle 0 as illustrated in Figure 3. For such line, we can draw
the orthogonal line going through a pixel (z,y). The value
of p corresponds to the distance to the line. In other words,
a point (6, p) of Op-space corresponds to a line of zy-space.
The key idea of the Hough transform is to vote
in fp-space for every pixel in the zy-space. Let
(x0,90), (1,Y1)s -+, (Tk—1,Yk—1) be the k pixels in xy-
space. The Hough transform is spelled out as follows:

xcosf + ysinf
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Two dimensional Spaces zy and 0p used in the Hough transform

[Straight Forward Hough Transform]
fori—0tok—1
for 6 «+— 0 to 179
begin
p — T cos + yi sin 6
vlb][p] — v[b][p] + 1
end
for 6 <+ 0 to 179 do in parallel
for p «— —12 to \% do in parallel
output (6, p) if v[0][p] > threshold

For simplicity, we assume that the value of p is automati-
cally rounded to an integer. In the Straight Forward Hough
Transform, for each point (zy,yx), the values of xy cos@
and yy sin 6 are computed for § = 0,1,...,179. If v[d][p]
is storing a large value, many points in the k input pixels
lie in the line in xy-space corresponds to a point (6, p) in
0 p-space.



We will show that, it is sufficient to compute these
values for § = 0,1,...,90. From the addition theorem of
trigonometric functions, we have

2y, cos(180 — 0) + y; sin(180 — 6)
—x, cos(f) + yg sin(0).

P

@)

Using Formula (2), the Hough transform can also be done by
partitioning the range [0, 179] of 6 into two ranges [0, 89] and
[90, 179]. Also, we avoid going through array v for finding
elements larger than a threshold. Thus, our new Hough
transform, called the Circuit-oriented Hough Transform is
be spelled out as follows:

[Circuit-oriented Hough Transform]
fori«—0tok—1do

begin
for 6 «+ 0 to 89 do
begin
p — x) cos O + yy sin 6
ol6]lp] — vlell] + 1
output (6, p) if v[0][p] = threshold
end
for 6 «+ 1 to 90 do
begin
p — —xcos(f) + ysin(0)
v[180 — 0][p] « v[180 — O][p] + 1
output (6, p) if v[0][p] = threshold
end
end

In the following section, we show an efficient implementa-
tion of the Circuit-oriented Hough Transform.

III. OUR FPGA ARCHITECTURE FOR THE HOUGH
TRANSFORM

This section describes our FPGA architecture for the
Hough transform using DSP blocks and block RAMs in
Xilinx Virtex-6 FPGA. We use Xilinx Virtex-6 Family
FPGA XC6VLX240T-1 as the target device [20].

A. Structure of our architecture for the Hough transform

Figure 4 illustrates our architecture for the Hough
transform. We use 178 DSP blocks X, X5,...Xg9 and
Y1,Ys5,...,Yg. For each 8 (0 < 6 < 90) Xy and Yy
compute xy cosf and yy cos @ for given z and yy, respec-
tively. Since xj cos0 = zg, x;cos90 = 0, yrsin0 = 0,
and yi cos90 = yi, DSP blocks Xy, Xgo, Yp, and Yy
are not necessary. Using an adder and a subtractor for each
pair Xy and Yy, pg = xrcos + ypcosf and pigg_g =
—xy, cos 0 + yi cos 0 are computed. We also use 180 block
RAMs Vjy, Vi, ... Vizg to store the voting value. Address p
of each Vy (0 < 6 < 179) is used to store the value of

v[b][p].
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Two DSP blocks Xy and Yy with an adder and subtracter to

To minimize the delay between registers, DSP blocks
X1,...,Xgo are connected in a pipeline fashion as illus-
trated in Figure 4. Each X has a register to store the value of
xg. In every clock cycle, the value is transferred from Xy to
Xp1. Similarly, DSP blocks Yy, Y7, ..., Yy are connected
in a pipeline fashion.

Figure 5 illustrates two DSP blocks Xy and Yy with an
adder and subtracter to compute p. In Xy, the value of zy
is loaded in an internal register. Also, the value of cosf is
pre-computed. Note that the value of cos @ used in Xy is a
fixed value. The product of x; and cosf is computed in a
multiplier of the DSP block Xy. Similarly, the value of sin ¢
used in Yy is a fixed value and the product of y;, and sin 6
is computed in a multiplier of the DSP block Yj.

In the Virtex-6 FPGA XC6VLX240T, that is our target
device, has DSP48E1 blocks are arranged in 8 columns of
96 adjacent DSP48E1 blocks. Neighboring DSP48E1 blocks
are connected directly through pipeline registers. Our Hough
transform architecture uses 2 columns to compute x, cos 6
and y, sin 0 each, and uses a pipeline technique to maximize
the clock frequency (Figure 6).

Figure 7 illustrates the architecture of Vj using a block
RAM. A block RAM in the FPGA is dual port architecture.
Xilinx Virtex-6 Family has 18Kbit dual-port block RAMs,
which have two sets of ports operated independently. Two
sets of ports are:

Port Set A ADDRA (ADDRess A), DOA (Data Output
A), DIA (Data Input A), and
Port Set B ADDRB (ADDRess B), DOB (Data Output
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Figure 6.
DSP blocks

Pipeline architecture to compute zg cosf and yi sin 6 with

B), DIB (Data Input B).

Let M]i] denote a data of address i of the block RAM. In
read operation of Port Set A, M[ADDRA] is output from
DOA after the rising clock edge. In write operation of Port
Set A, the data given to DIA is written in M[ADDRA] at
the rising clock edge. Read/write operations of Port Set B
are the same as Port Set A. Port Set A and Port Set B work
independently. In the block RAMs in the target device of
this work, read/write operations can be configured as either
RF (Read First) mode or WF (Write First) mode. In the RF
mode, if reading and writing operations are performed to
the same address, reading operation is performed before the
reading operation. Hence the reading data is the data before
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since the same value of p may be input continuously, the
setting of block RAMs must be RF. Namely, when the same
value of p is input continuously, the former voted value is
not read from the block RAM. To avoid this situation, we
use an additional register to store the latest voted value and
if the same value of p is input continuously, the stored value
is used instead of the value read from the block RAM.

In the same time, a comparator is used to determine if
vglp] + 1 threshold. If so, the value of p is written
in a register. After that, a pair (6,p) is written into a
next register. The pair (6, p) represents a probable line. It
moves toward the output of the circuit using series of shift
registers one by one shown in Figure 4. In order to reduce
the number of clock cycles necessary to move data to the
output, we use two series of shift registers. One is used
for output data of Vj, ..., Vgg. The other is used for output
data of Vyq, . .., Vi7g. Therefore, the number of clock cycles
necessary to move data to the output is reduced to at most
90 clock cycles.
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B. Data representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed
and power consumption. Higher precision will lead to less
quantization error in the final implementation. On the other
hand, lower precision will produce more compaction and
faster designs with less power consumption. A trade-off
choice needs to be made depending on the given application
and available FPGA resources.

In our work, in order to minimize chip space and compu-
tation time, short fixed point representation of numbers are
used. Considering the structure of DSP blocks and block
RAMs, we choose the data presentation in our implementa-
tion, as follows. The data format of inputs that are pairs of
coordinates zj, and y, are 10bit two’s complement integer
each. Also, the data format of cos @ and sin @ is 16bit fixed
point number, which consists of 1bit sign, 1bit integer and
14bit fraction based on two’s complement. On the other
hand, the data format of p is 10bit two’s complement integer.
The data format of the voted value is 18bit integer. Namely,
the number of the vote is at most 2'® — 1. Since the range
of the value of 6 is 0 to 180, the data format of § is 8bit
integer.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed architecture for
Hough transform and evaluated it on the Xilinx Virtex-
6 FPGA XC6VLX240T-1. Table I shows the experimental
results using Xilinx ISE 13.1. In the implementation, to
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reduce the delay of the circuit, some pipeline registers are
inserted into between circuit elements. It takes 3 clock cycles
to compute the values of p for given zp and yi. Also,
4 clock cycles are necessary to output a pair (6,p) that
represents a probable line. Moreover, the number of clock
cycles necessary to move data to the output is reduced to
at most 90 clock cycles. Therefore, this circuit can output
identified straight lines represented by (6, p) in m + 97
cycles, i.e., 2’2; 59179 us. For example, Figure 1(b) includes
33232 edge points. Therefore, the circuit can perform the
Hough transform in 135.75ps. If the input image is worst
case in terms of the computing time, that is, if all the points
of an image of size 512 x 512(= 262144) are edge points, it
takes 1068.11us to complete to output the results. Of course,
it is not possible that all points are edge points, however, this
fact guarantees that our Hough transform implementation for
any 512 x 512 image terminates in less than 1068.11us.

Table I
PERFORMANCE EVALUATION OF THE PROPOSED ARCHITECTURE FOR
HOUGH TRANSFORM

DSP48E1 blocks (out of 768)
18Kbit block RAMs (out of 832)
Slices (out of 301440)

Clock frequency [MHz]

178 (23.1%)
180 (21.6%)
14493 (4.81%)
245.519

For the purpose of estimating the speed up of our FPGA
implementation, we have also implemented a conventional
software approach of Hough transform using GNU C. We
have used Intel Xeon X7460 running in 2.66GHz and
128GB memory to run the sequential algorithm for Hough
transform. For the image shown in Figure 1(b) that includes
33232 edge points, the software implementation can perform
the Hough transform in 413.98ms. Also, if all the points of
an image of size 512 x 512(= 262144) are edge points, it
takes 3266.75ms to complete to output the results. There-
fore, our FPGA implementation attains a speed-up factor of
more than 3000 over the sequential implementation on the
CPU.

There are a number of literatures reported to imple-
ment Hough transform for lines using the FPGA shown
in Section I. Performances such as device, logic blocks,
DSP blocks, frequency and throughput are compared in
Table II. It is difficult to directly compare to other works
because utilized FPGAs and supported size of images differ.
Considering the throughput, however, it is clear that the
performance of our FPGA implementation is better than that
of other works.

V. CONCLUSIONS

We have presented a new architecture of the Hough
transform for the straight lines using DSP blocks and block
RAMs in the Virtex-6 Family FPGA. Partitioning the param-
eter space to vote, the 180 voting operations are performed
in parallel with 178 DSP48E1s and 180 18Kbit block RAMs.



COMPARISON WITH RELATED WORKS FOR HOUGH TRANSFORM

Table 11

Karabernou [14] | Deng [15]
Device XC4010EPC84 XC4010XL
Logic blocks | 205 CLBs 333 CLBs
DSP blocks — —
Frequency 23.166MHz 40MHz
Throughput 10.368Mpixel/s 0.623Mpixel/s
Lee [16] This work
Device Virtex 4 XC6VLX240T-1
Logic blocks | 314 CLBs 14493 Slices
DSP blocks — 178 DSP48Els
Frequency 132MHz 245.519MHz
Throughput 32.768Mpixel/s 245.428Mpixel/s

We have implemented our architecture on the Virtex-6
Family FPGA XC6VLX240T-1. The experimental results
show that this implementation runs in 245.519MHz and
given m coordinates of edge points, it can output identified
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Accelerating Dynamic Programming for the Optimal Polygon Triangulation
on the GPU
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Abstract—Modern GPUs (Graphics Processing Units) can be
used for general purpose parallel computation. Users can de-
velop parallel programs running on GPUs using programming
architecture called CUDA (Compute Unified Device Architec-
ture). The optimal polygon triangulation problem for a convex
polygon is an optimization problem to find a triangulation
with minimum total weight. It is known that this problem can
be solved using the dynamic programming technique in O(n?)
time using a work space of size O(n?). The main contribution of
this paper is to present an efficient parallel implementation of
this O(n?)-time algorithm on the GPU. In our implementation,
we have used two new ideas to accelerate the dynamic program-
ming. The first idea (granularity adjustment) is to partition the
dynamic programming algorithm into many sequential kernel
calls of CUDA, and to select the best size and number of blocks
and threads for each kernel call. The second idea (sliding and
mirroring arrangements) is to arrange the temporary data for
coalesced access of the global memory in the GPU to minimize
the memory access overhead. Our implementation using these
two ideas solves the optimal polygon triangulation problem for
a convex 16384-gon in 69.1 seconds on the NVIDIA GeForce
GTX 580, while a conventional CPU implementation runs in
17105.5 seconds. Thus, our GPU implementation attains a
speedup factor of 247.5.

Keywords-Dynamic programming; parallel algorithms; coa-
lesced memory access; GPGPU; CUDA

I. INTRODUCTION

The GPU (Graphical Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3], [4], [5]. Latest GPUs are
designed for general purpose computing and can perform
computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention
of many application developers [1], [6]. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [7], the computing engine for
NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are
more efficient than multicore processors [8], since they have
hundreds of processor cores running in parallel.

Dynamic programming is an important algorithmic tech-
nique to find an optimal solution of a problem over an
exponential number of solution candidates [9]. A naive
solution for such problem needs exponential time. The key
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idea behind dynamic programming is to:

e partition a problem into subproblems,
« solve the subproblems independently, and
« combine the solution of the subproblems

to reach an overall solution. Dynamic programming enables
us to solve such problems in polynomial time. For example,
the longest common subsequence problem, which requires
finding the longest common subsequence of given two
sequences, can be solved by the dynamic programming ap-
proach [10]. Since a sequence have an exponential number of
subsequences, a straightforward algorithm takes an exponen-
tial time to find the longest common subsequence. However,
it is known that this problem can be solved in O(nm) time
by the dynamic programming approach, where n and m
are the lengths of two sequences. Many important problems
including the edit distance problem, the matrix chain product
problem, and the optimal polygon triangulation problem can
be solved by the dynamic programming approach [9].

The main contribution of this paper is to implement
the dynamic programming approach to solve the optimal
polygon triangulation problem [9] on the GPU. Suppose that
a convex n-gon is given and we want to triangulate it, that
is, to split it into m — 2 triangles by n — 3 non-crossing
chords. Figure 1 illustrates an example of a triangulation
of an 8-gon. In the figure, the triangulation has 6 triangles
separated by 5 non-crossing chords. We assume that each
of the @ chords is assigned a weight. The goal of the
optimal polygon triangulation is to select n — 3 non-crossing
chords that triangulate a given convex m-gon such that the
total weight of selected chords is minimized. This problem is
applied to matrix chain multiplication that is an optimization
problem. Matrix chain multiplication is a special case of op-
timal polygon triangulation problem, i.e., instances of matrix
chain multiplication can be computed as optimal polygon
triangulation problem [9]. A naive approach, which evaluates
the total weights of all possible % triangulations,
takes an exponential time. On the other hand, it is known
that the dynamic programming technique can be applied to
solve the optimal polygon triangulation in O(n?) time [9],
[11], [12] using work space of size O(n?). As far as we
know, there is no previously published algorithm running
faster than O(n?) time.
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Figure 1. An example of a triangulation of a convex 8-gon

In our implementation, we have used two new ideas to
accelerate the dynamic programming algorithm. The first
idea is to partition the dynamic programming algorithm into
a lot of sequential kernel calls of CUDA, and to select
the best method and the numbers of blocks and threads
for each kernel calls (granularity adjustment). The dynamic
programming algorithm for an n-gon has n — 1 stages, each
of which involves the computation of multiple temporary
data. Earlier stages of the algorithm are fine grain in the
sense that we need to compute the values of a lot of
temporary data but the computation of each temporary data
is light. On the other hand, later stages of the algorithm
are coarse grain in the sense that few temporary data are
computed but the computation is heavy. Thus, in earlier
stages, a single thread is assigned to the computation of each
temporary data and its value is computed sequentially by the
thread (OneThreadPerEntry). In middle stages, a block with
multiple threads is allocated to the computation for each
temporary data and the value of the temporary data is com-
puted by threads of a block in parallel (OneBlockPerEntry).
Multiple blocks are allocated to compute each temporary
data in later stages (BlocksPerEntry). Also, the size of each
block (i.e. the number of threads), and the number of used
blocks affects the performance of algorithms on the GPU.
We have tested all of the three methods for various sizes of
each block and the number of blocks for every stage, and
determined the best way, one of the three methods and the
size and the number of blocks for computing the temporary
data in each stage.

The second idea is to arrange temporary data in a 2-
dimensional array of the global memory using two types of
arrangements: sliding arrangement and mirroring arrange-
ment. The temporary data used in the dynamic programming
algorithm are stored in a 2-dimensional array in the global
memory of the GPU. The bandwidth of the global memory
is maximized when threads repeatedly performs coalesced
access to it. In other words, if threads accessed to continuous
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locations of the global memory, these access requests can
be completed in minimum clock cycles. On the other hand,
if threads accessed to distant locations in the same time,
these access requests need a lot of clock cycles. We use the
sliding arrangement for OneThreadPerEntry and the mirror-
ing arrangement for OneBlockPerEntry and BlocksPerEntry.
Using these two arrangements, the coalesced access is per-
formed for the temporary data.

Our implementation using these two ideas solves the
optimal polygon triangulation problem for a convex 16384-
gon in 69.1 seconds on the NVIDIA GeForce GTX 580,
while a conventional CPU implementation runs in 17105.5
seconds. Thus, our GPU implementation attains a speedup
factor of 247.5.

The rest of this paper is organized as follows; Section II
introduces the optimal polygon triangulation problem and
reviews the dynamic programming approach solving it. In
Section III, we show the GPU and CUDA architectures to
understand our new idea. Section IV proposes our two new
ideas to implement the dynamic programming approach on
the GPU. The experimental results are shown in Section V.
Finally, Section VI offers concluding remarks.

II. THE OPTIMAL POLYGON TRIANGULATION AND THE
DYNAMIC PROGRAMMING APPROACH

The main purpose of this section is to define the optimal
polygon triangulation problem and to review an algorithm
solving this problem by the dynamic programming ap-
proach [9].

Let vg,vy,...,v,—1 be vertices of a convex n-gon.
Clearly, the convex n-gon can be divided into n—2 triangles
by a set of n — 3 non-crossing chords. We call a set of
such n — 3 non-crossing chords a triangulation. Figure 1
shows an example of a triangulation of a convex 8-gon. The
convex 8-gon is separated into 6 triangles by 5 non-crossing
chords. Suppose that a weight w; ; of every chord v;v; in a
convex n-gon is given. The goal of the optimal polygon
triangulation problem is to find an optimal triangulation
that minimizes the total weights of selected chords for the
triangulation. More formally, we can define the problem as
follows. Let T' be a set of all triangulations of a convex
n-gon and ¢ € T be a triangulation, that is, a set of
n—3 non-crossing chords. The optimal polygon triangulation
problem requires finding the total weight of a minimum
weight triangulation as follows:

min{ Z Wi, j | te T}

viv; €L

We will show that the optimal polygon triangulation
can be solved by the dynamic programming approach. For
this purpose, we define the parse tree of a triangulation.
Figure 2 illustrates the parse tree of a triangulation. Let [;
(1 <7< n-—1)be edge v;—1v; of a convex n-gon. Also,
let r denote edge vov,—1. The parse tree is a binary tree
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of a triangulation, which has the root » and n — 1 leaves
li,la,...,1,—1. It also has n — 3 internal nodes (excluding
the root 7), each of which corresponds to a chord of the
triangulation. Edges are drawn from the root toward the
leaves as illustrated in Figure 2. Since each triangle has
three nodes, the resulting graph is a full binary tree with
n — 1 leaves, in which every internal node has exactly two
children. Conversely, for any full binary tree with n — 1
leaves, we can draw a unique triangulation. It is well known
that the number of full binary trees with n + 1 leaves is the

Catalan number %[13}. Thus, the number of possible
2n—4)!

tri{«mgulations of convex 7n-gon is m Hence, a
naive approach, which evaluates the total weights of all
possible triangulations, takes an exponential time.

We are now in position to show an algorithm using the
dynamic programming approach for the optimal polygon
triangulation problem. Suppose that an n-gon is chopped
off by a chord v;_1v; (0 < i < j <n —1) and we obtain
a (j — i)-gon with vertices v;_1,v;,...,v; as illustrated
in Figure 3. Clearly, this (j — ¢)-gon consists of leaves
lilix1,...,1; and a chord v;_1v;. Let m; ; be the minimum
weight of the (j —4)-gon. The (j —4)-gon can be partitioned
into the (k — 4)-gon, the (j — k)-gon, and the triangle
v;—1v;v; as illustrated in Figure 3. The values of & can be
an integer from ¢ to 5 — 1. Thus, we can recursively define
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Figure 3. A (j —1)-gon is partitioned into a (k—4)-gon and a (j —k)-gon

m; ; as follows:

0

mi; = ifj—igl,

= min (mk +Meg1; + Wio1k + Wk j)

i
“ i<k<j—1

The figure also shows its parse tree. The reader should
have no difficulty to confirm the correctness of the recursive
formula and the minimum weight of the n-gon is equal to
mimn—1-

Let M;; = m;; + w;—1,; and wg,—1 = 0. We can
recursively define M, ; as follows:

My, = 0 ifj—i<l,

M;; = min (M, x + Myy1,5) +wi—1,; otherwise.
i<h<j—1 : ,

It should be clear that M; ,—1 = Mmip_1 + Won—1 =

m1,,—1 is the minimum weight of the n-gon.

Using the recursive formula for M; ;, all the values of
M; ; can be computed in n — 1 stages by the dynamic
programming algorithm as follows:

Stage W11 = Moo =+ = M,_1n-1 =0.

Stage W ;11 = wi—1,44+1 forall i (1 <¢<n—2)

Stage 2M; ;12 min;<p<it1(Mix + Miyi1i42) +

wi_17i+2 fOT all 7 (1 S 7 S n — 3)

Stage PMiivp = minj<p<itp—1(Mix + Mri1,itp) +
Wi;—1,i+p for all ¢ (1 <i1<n —p— 1)

Stage 143 -3 min;<p<pti—a(M;x +
M1 nti-3) + Wi—1pyi—g forall i (1 <i <2)

otherwise.
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Figure 4. Examples of w; ; and M; ;

Stage Bfr,21 = mini<p<n—2(M;r + Mry1n-1) +
Wo,n—1
Figure 4 shows examples of w; ; and M; ; for a convex
8-gon. It should be clear that each stage computes the values
of table M; ; in a particular diagonal position. Let us analyze
the computation performed in each Stage p (2 < p < n—2).
. (n —p— 1) Mm»’s, ]\417p+17 Mg’p+27 ce
are computed, and
« the computation of each M; ;’s involves the computa-
tion of the minimum over p values, each of which is
the sum of two M; ;’s.
Thus, Stage p takes (n —p — 1) - O(p) = O(n? — p?) time.
Therefore, this algorithm runs in °,_ ., O(n* —p®) =
O(n?) time. o
From this analysis, we can see that earlier stages of the
algorithm is fine grain in the sense that we need to compute
the values of a lot of M; ;’s but the computation of each M; ;
is light. On the other hand, later stages of the algorithm is
coarse grain in the sense that few M; ;’s are computed but
its computation is heavy.

9 Mnfpfl,nfl

III. GPU AND CUDA ARCHITECTURES

CUDA uses two types of memories in the NVIDIA
GPUs: the global memory and the shared memory [7]. The
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CUDA hardware architecture

global memory is implemented as an off-chip DRAM of
the GPU, and has large capacity, say, 1.5-6 Gbytes, but
its access latency is very long. The shared memory is an
extremely fast on-chip memory with lower capacity, say,
16-48 Kbytes. The efficient usage of the global memory
and the shared memory is a key for CUDA developers to
accelerate applications using GPUs. In particular, we need to
consider the coalescing of the global memory access and the
bank conflict of the shared memory access [14], [3], [8]. To
maximize the bandwidth between the GPU and the DRAM
chips, the consecutive addresses of the global memory must
be accessed in the same time. Thus, threads should perform
coalesced access when they access to the global memory.
Figure 5 illustrates the CUDA hardware architecture.
CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
processors such that all threads in a block are executed by the
same streaming processor in parallel. All threads can access
to the global memory. However, as we can see in Figure 5,
threads in a block can access to the shared memory of the
streaming processor to which the block is allocated. Since
blocks are arranged to multiple streaming processors, threads
in different blocks cannot share data in shared memories.
CUDA C extends C language by allowing the programmer
to define C functions, called kernels. By invoking a kernel,
all blocks in the grid are allocated in streaming processors,
and threads in each block are executed by processor cores
in a single streaming processor. The kernel calls terminates,
when threads in all blocks finish the computation. Since all
threads in a single block are executed by a single streaming
processor, the barrier synchronization of them can be done
by calling CUDA C syncthreds () function. However,
there is no direct way to synchronize threads in different
blocks. One of the indirect methods of inter-block barrier
synchronization is to partition the computation into kernels.
Since continuous kernel calls can be executed such that
a kernel is called after all blocks of the previous kernel



terminates, execution of blocks is synchronized at the end
of kernel calls. Thus, we arrange a single kernel call to each
of n — 1 stages of the dynamic programming algorithm for
the optimal polygon triangulation problem.

As we have mentioned, the coalesced access to the global
memory is a key issue to accelerate the computation. As
illustrated in Figure 6, when threads access to continuous
locations in a row of a two-dimensional array (horizontal
access), the continuous locations in address space of the
global memory are accessed in the same time (coalesced
access). However, if threads access to continuous locations
in a column (vertical access), the distant locations are
accessed in the same time (stride access). From the structure
of the global memory, the coalesced access maximizes
the bandwidth of memory access. On the other hand, the
stride access needs a lot of clock cycles. Thus, we should
avoid the stride access (or the vertical access) and perform
the coalesced access (or the horizontal access) whenever
possible.

IV. OUR IMPLEMENTATION OF THE DYNAMIC
PROGRAMMING APPROACH FOR THE OPTIMAL POLYGON
TRIANGULATION

The main purpose of this section is to show our imple-
mentation of dynamic programming for the optimal polygon
triangulation in the GPU. We focus on our new ideas, gran-
ularity adjustment and sliding and mirroring arrangements
for accelerating the dynamic programming algorithm.

A. Granularity adjustment technique

Recall that each Stage p (2 < p < n — 2) consists of the
computation of (n —p — 1) M, ;’s each of which involves
the computation of the minimum of p values. We consider
three methods, OneThreadPerEntry, OneBlockPerEntry, and
BlocksPerEntry to perform the computation of each of
the n — 2 stages. In OneThreadPerEntry, each M, ;,,, is
computed sequentially by one thread. In OneBlockPerEntry,
each M; ;, is computed by one block with multiple threads
in parallel. In BlocksPerEntry, each M; ;, is computed by
multiple blocks in parallel.

Let ¢ be the number of threads in each block and b
be the number of blocks. In our implementation of the
three methods, ¢ and b can be the parameters that can be
changed to get the best performance. The details of the
implementation of the three methods are spelled out as
follows:

OneThreadPerEntry(¢): Each M;;., is computed by a
single thread sequentially. Thus, we use (n — p —
1) threads totally. Since each block has ¢ threads,
"%p_l blocks are used.

OneBlockPerEntry(t):Each M; ;1 is computed by a block
with ¢ threads. The computation of M, ;,, involves
the p sums M + Miypri1 ¢ < k< i+p—
1). The t threads compute p sums in parallel such
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that each thread computes % sums and their local
minimum of the £ sums is computed. The resulting
local ¢t minima are written into the shared memory.
After that, a single thread is used to compute the
minimum of the ¢ local minima.
BlocksPerEntry(b, t)Each M, ;, is computed by b blocks

with ¢ threads each. The computation of p sums is
arranged b blocks equally. Thus, each block com-
putes the ¥ sums and their minimum is computed
in the same way as OneBlockPerEntry(¢). The re-
sulting b minima are written to the global memory.
The minimum of the b minima is computed by a
single thread.

For each Stage p (2 < p < n—2), we can choose one of the

three methods OneThreadPerEntry(¢), OneBlockPerEntry(t),

and BlocksPerEntry(b, t), independently.

B. Sliding and mirroring arrangement

Recall that, each Stage p (2 < p < n — 2) of the dynamic
programming algorithm involves the computation

Mi,i+p = min

i§k§i+p71( ik K+ 1,i+p) i—1,i4p

Let us first observe the naive arrangement which allocates
each M, ; to the (4, j) element of the 2-dimensional array,
that is, the element in the ¢-th row and the j-th column. As
illustrated in Figure 7, to compute M; ;4 , in Stage p
e p temporary data M;,;, M;;11,...,M; ;41 in the
same row and
e D temporary data Mi+1,i+pa Mi+2,i+p7 N
the same column

5 Mi+p,i+p in

are accessed. Hence, the naive arrangement involves the
vertical access (or the stride access), which decelerates the
computing time.

For the coalesced access of the global memory, we
present two arrangements of M; ;s in a 2-dimensional array,
the sliding arrangement and the mirroring arrangement as
follows:
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Figure 6. Coalesced and stride access

Sliding arrangement: Each M; ; 0<:i<j<n-1)
is allocated to (i — j + n,j) element of the 2-
dimensional array of size n X n.

Mirroring arrangement:  Each M; ; (0 <i < j<n-—1)
is allocated to (4, ) element and (j,) element.

The reader should refer to Figure 8 for illustrating the sliding
and mirroring arrangements. We will use sliding arrange-
ment for OneThreadPerEntry and the mirroring arrangement
for OneBlockPerEntry and BlocksPerEntry.

We will show that the vertical access can be avoided
if we use the sliding arrangement for OneThreadPerEntry.
Suppose that each thread 7 computes the value of M; ;4.
First, each thread ¢ reads M;; in parallel and then read
M;41,i+p in parallel. Thus, Moo, M 1,... are read in
parallel and then M 14p, M2 oy, ... are read in parallel.
Clearly, My o, M 1,... are in the same row of the sliding
arrangement. Also, My 14p, M2 24, ... are also in the same
row. Thus, the coalesced read is performed. Similarly, we
can confirm that the remaining read operations by multiple
threads perform the coalesced read.

Next, we will show that the vertical access can be
avoided if we use the mirroring arrangement for OneBlock-
PerEntry and BlocksPerEntry. Suppose that a block com-
putes the value of M, ;,,. Threads in the block read

M; i, M; 341, ..., Mi;yp—1 in parallel, and then read
M1 ivps Mivoivp, -, Miypitp in parallel. Clearly,
Mi,ini,i+1;-~-aMi,i+p71 are stored in (272)7(2,2 +

1),...,(i,i + p — 1) elements in the 2-dimensional array
of the mirroring arrangement, and thus, threads perform
the coalesced read. For the coalesced read, threads read
Mi+1,i+p7 Mi+2,i+p7 ey Mi+p,i+p stored in (Z + p,’L +
1), + p,i +2),...,(i + p,i + p) elements in the 2-
dimensional array of the mirroring arrangement. Clearly,
these elements are in the same row and the threads perform
the coalesced read.
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C. Our algorithm for the optimal polygon triangulation

Our algorithm for the optimal polygon triangulation
is designed as follows: For each Stage p 2 < p <
n — 2), we execute three methods OneThreadPerEntry(t),
OneBlockPerEntry(¢), and BlocksPerEntry(b,¢) for various
values of ¢ and b, and find the fastest method and parameters.
As we are going to show later, OneThreadPerEntry is the
fastest in earlier stages. In middle stages, OneBlockPerEntry
is fastest. Finally, BlocksPerEntry is the best in later stages.
Thus, we first use the sliding arrangement in earlier stages
computed by OneThreadPerEntry. We then convert the 2-
dimensional array with the sliding arrangement into the
mirroring arrangement. After that, we execute OneBlock-
PerEntry and then BlocksPerEntry in the remaining stages.
Note that the computing time of our algorithm depends
only on the number of vertices, i.e., it is independent
from the weights of edges. Therefore, given the number of
vertices, we can find and determine the fastest method and
parameters.

V. EXPERIMENTAL RESULTS

We have implemented our dynamic programming algo-
rithm for the optimal polygon triangulation using CUDA
C. We have used NVIDIA GeForce GTX 580 with 512
processing cores (16 Streaming Multiprocessors which has
32 processing cores) running in 1.544GHz and 3GB mem-
ory. For the purpose of estimating the speedup of our GPU
implementation, we have also implemented a conventional
software approach of dynamic programming for the optimal
polygon triangulation using GNU C. We have used Intel
Core i7 870 running in 2.93GHz and 8GB memory to run
the sequential algorithm for dynamic programming.

Table I shows the computing time in seconds for a
16384-gon. Table I (a) shows the computing time of
OneThreadPerEntry(¢) for ¢t = 32, 64, 128, 256, 512,
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1024. The computing time is evaluated for the naive ar-
rangement and the sliding arrangement. For example, if
we execute OneThreadPerEntry(64) for all stages on the
naive arrangement, the computing time is 854.8 seconds.
OneThreadPerEntry(64) runs in 431.8 seconds on the sliding
arrangement and thus, the sliding arrangement can attain a
speedup of factor 1.98.

Table I (b) shows the computing time of
OneBlockPerEntry(¢) for t 32,64, 128,256,512,1024.
Suppose that we select ¢ that minimizes the computing
time. OneBlockPerEntry(128) takes 604.7 seconds for the
naive arrangement and OneBlockPerEntry(128) runs in 73.5
seconds for the mirroring arrangement. Thus, the mirroring
arrangement can attain a speedup of factor 8.23.

Table I (c) shows the computing time
BlocksPerEntry(b,t) for b = 2,4,8 and t
32,64,128,256,512,1024. Again, let us select b and
t that minimize the computing time. BlocksPerEntry(2,128)
takes 610.9 seconds for the naive arrangement and
BlocksPerEntry(2,128) runs in 97.8 seconds for the
mirroring arrangement. Thus, the mirroring arrangement
can attain a speedup of factor 6.25.

Figure 9 shows the running time of each stage using the
three methods. For each of the three methods and for each
of the 16382 stages, we select best values of the number ¢ of
threads in each block and the number b of blocks. Also, the
sliding arrangement is used for OneThreadPerEntry and the
mirroring arrangement is used for OneBlockPerEntry and
BlocksPerEntry. Recall that we can use different methods
with different parameters can be used for each stage inde-
pendently. Thus, to attain the minimum computing time we
should use

o OneThreadPerEntry for Stages 0-49,

o OneBlockPerEntry for Stages 50-16350, and

o BlocksPerEntry for Stages 16351-16382.

Note that if we use three methods for each stage in this way,
we need to convert the sliding arrangement into the mirror-

of
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Figure 9. The running time of each stage using three methods

ing arrangement. This conversion takes only 0.21 mseconds.
Including the conversion time, the best total computing time
of our implementation for the optimal polygon triangulation
problem is 69.1 seconds. The sequential implementation
used Intel Core i7 870 runs in 17105.5 seconds. Thus,
our best GPU implementation attains a speedup factor of
247.5. Recall that the computing time does not depend on
edge weights shown in the above section. Therefore, for
another 16384-gon whose weights are different, we can
obtain almost the same speedup factor as that of the above
experiment.

VI. CONCLUDING REMARKS

In this paper, we have proposed an implementation of
the dynamic programming algorithm for an optimal polygon
triangulation on the GPU. Our implementation selects the
best methods, parameters, and data arrangement for each
stage to obtain the best performance. The experimental
results show that our implementation solves the optimal
polygon triangulation problem for a convex 16384-gon in
69.1 seconds on the NVIDIA GeForce GTX 580, while a



Table T
THE COMPUTING TIME (SECONDS) FOR A 16384-GON USING EACH OF THE THREE METHODS

(a) The computing time of OneThreadPerEntry(¢)
32

t 64 128 256 512 1024
naive arrangement 596.8 | 854.8 | 863.3 | 889.2 | 1202.0 | 1614.2
sliding arrangement | 312.8 | 431.8 | 4422 | 541.0 668.3 | 1023.2
(b) The computing time of OneBlockPerEntry(t)
t 32 64 128 256 1024
naive arrangement 631.8 | 606.8 | 604.7 | 612.3 | 678.7 | 1286.5
mirroring arrangement | 169.5 98.5 73.5 80.4 | 225.0 824.8
(c) The computing time of BlocksPerEntry(b, t)
t 32 64 128 256 512 1024
b= 650.2 | 614.6 | 6109 | 627.3 828.8 | 2007.8
naive arrangement b=4 | 6505 | 617.5 | 6249 | 673.1 1174.9 | 3585.0
b= 655.6 | 630.5 | 670.0 | 815.1 | 1917.8 | 6779.5
b=2 1] 1763 | 110.8 97.8 | 129.1 422.6 | 1611.7
mirroring arrangement | b=4 | 1885 | 136.2 | 148.2 | 229.8 820.3 | 3188.6
b=8 | 216.0 | 189.9 | 250.5 | 433.6 | 1613.7 | 6337.9
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Abstract—Graphics Processing Units (GPUs) are specialized
microprocessors that accelerate graphics operations. Recent
GPUs, which have many processing units connected with an
off-chip global memory, can be used for general purpose par-
allel computation. Ant Colony Optimization (ACO) approaches
have been introduced as nature-inspired heuristics to find good
solutions of the Traveling Salesman Problem (TSP). In ACO
approaches, a number of ants traverse the cities of the TSP
to find better solutions of the TSP. The ants randomly select
next visiting cities based on the probabilities determined by
total amounts of their pheromone spread on routes. The main
contribution of this paper is to present sophisticated and efficient
implementation of one of the ACO approaches on the GPU. In our
implementation, we have considered many programming issues
of the GPU architecture including coalesced access of global
memory, shared memory bank conflicts, etc. In particular, we
present a very efficient method for random selection of next cities
by a number of ants, Our new method uses iterative random trial
which can find next cities in few computational costs with high
probability. The experimental results on NVIDIA GeForce GTX
580 show that our implementation for 1002 cities runs in 8.71
seconds, while a conventional CPU implementation runs in 381.95
seconds. Thus, our GPU implementation attains a speed-up factor
of 43.47.

Index Terms—Ant Colony Optimization, Traveling Salesman
Problem, GPU, CUDA, Parallel Processing

I. INTRODUCTION

Graphics Processing Units (GPUs) are specialized micro-
processors that accelerate graphics operations. Recent GPUs,
which have many processing units connected with an off-chip
global memory, can be used for general purpose parallel com-
putation. CUDA (Compute Unified Device Architecture) [1]
is an architecture for general purpose parallel computation on
GPUs. Using CUDA, we can develop parallel algorithms to
be implemented in GPUs. Therefore, many studies have been
devoted to implement parallel algorithms using CUDA [2],
(31, [4], [5], [6].

Ant colony optimization (ACO) was introduced as a nature-
inspired meta-heuristic for the solution of combinatorial opti-
mization problems [7], [8]. The idea of ACO is based on the
behavior of real ants exploring a path between their colony and
a source of food. More specifically, when searching for food,
ants initially explore the area surrounding their nest at random.
Once an ant finds a food source, it evaluates the quantity and
the quality of the food and carries some of it back to the nest.
During the return trip, the ant deposits a chemical pheromone
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trail on the ground. The quantity of pheromone will guide
other ants to the food source. Indirect communication between
the ants via pheromone trails makes them possible to find
shortest paths between their nest and food sources. In ACO,
the characteristic of real ant colonies is exploited in simulated
ant colonies to solve problems. The generic ACO algorithm
consists of the following two steps:

Step 1: Initialization
« Initialize the pheromone trail
Step 2: Iteration
o For each ant repeat until stopping criteria

— Construct a solution using the pheromone trail
— Update the pheromone trail

The first step mainly consists in the initialization of the
pheromone trail. In the iteration step, each ant constructs a
complete solution for the problem according to a probabilistic
state transition rule. The rule depends chiefly on the quantity of
the pheromone. Once all ants construct solutions, the quantity
of the pheromone is update in two phases: an evaporation
phase in which a fraction of the pheromone evaporates, and
a deposit phase in which each ant deposits an amount of
pheromone that is proportional to the fitness of its solution.
This process is repeated until stopping criteria.

Several variants of ACO have been proposed in the past.
The typical ones of them are Ant System (AS), Max-Min Ant
System (MMAS), and Ant Colony System (ACS). AS was the
first ACO algorithm to be proposed [7], [8]. The characteristic
is that pheromone trails is updated when all the ants have
completed the tour shown in the above algorithm. MMAS is an
improved algorithm over the AS [9]. The main different points
are that only the best ant can update the pheromone trails
and the minimum and maximum values of the pheromone
are limited. Another improvement over the original AS is
ACS [10]. The pheromone update, called local pheromone
update, is performed during the tour construction process in
addition to the end of the tour construction.

The main contribution of this paper is to implement the
AS to solve the traveling salesman problem (TSP) [11] on
the GPU. In TSP, a salesman visits n cities, and makes a
tour visiting each city exactly once to try to find the shortest
possible tour. We model the problem as a complete graph with
n vertices that represent the cities. Let vy, v1,...,v,-1 be



vertices that represent n cities, e; ; (0 < 4,7 <n — 1) denote
edges between cities, and (z;,7;) (0 < i < n — 1) be the
location of v;. Let d(i, j) be the distance between v; and v;.
In this paper, we assume that the distance between two cities
is their Euclidean distance. Namely, each distance between
cities ¢ and j is d(i, j) = d(j,7) = \/(z; — 2j)%> + (i — y;j)*
Given a tour 7', TSP is to find a tour which minimizes the
objective function S:

S= Y d(i,j).

e; ;€T

TSP is well known as an NP-hard problem in combinatorial
optimization and utilized as a benchmark problem for various
meta-heuristics such as ACO, genetic algorithm, tabu search,
etc.

Many algorithms of ACO for the TSP have been pro-
posed in the past. Mandrin er al. have shown a parallel
algorithm of MMAS with 4 network-connected computers
using MPI [12]. Delisle et al. have proposed an efficient
and straightforward OpenMP implementation with the multi-
processor system [13]. Also, GPU implementations have been
proposed. In [14], a GPU implementation of MMAS is shown.
Kobashi et al. have shown a GPU implementation of AS [15].
The implementation introduces nearest neighbor technique to
reduce the computing time of tour construction. Cecilia et al.
have proposed a GPU implementation of AS [16]. To reduce
the computing time of tour construction on the GPU, instead
of the ordinary roulette-wheel selection used when ants select
a next city to visit, they introduced an alternative method,
called I-Roulette. The method is similar to the roulette-wheel
selection, however, it does not exactly compute the roulette-
wheel selection.

In our implementation, we have considered many program-
ming issues of the GPU architecture such as coalesced access
of global memory, shared memory bank conflicts, etc. To
be concrete, arranging various data in the global memory
efficiently, we try to make the bandwidth of the global memory
of the GPU maximized. Also, to avoid the access to the global
memory as much as possible, we utilize the shared memory
that is on chip memory of the GPU.

In addition, we have introduced a stochastic method, called
stochastic trial, instead of the roulette-wheel selection that is
used when ants determine the next city to visit. Using the
stochastic trial, most prefix sum computation that is performed
in the roulette-wheel selection can be omitted. Since the
computing time of the prefix sum computation is dominated
in that of the AS for TSP, we attained further speed-up of it.

Note that our goal in this paper is to accelerate the AS on the
GPU, not to improve the accuracy of the solution. The solution
obtained by our implementation is basically the same as that by
the original AS for the TSP. We have implemented our parallel
algorithm in NVIDIA GeForce GTX 580. The experimental
results show that our implementation can perform the AS
for 1002 cities, that repeats tour construction and pheromone
update 100 times, in 8.71 seconds, while a conventional
CPU implementation runs in 381.95 seconds. Thus, our GPU
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implementation attains a speed-up factor of 43.47 over the
conventional CPU implementation.

The rest of this paper is organized as follows; Section II
introduces ant colony optimization for traveling salesman
problem. In Section III, we show the GPU and CUDA ar-
chitectures to understand our new idea. Section IV proposes
our new ideas to implement the ant colony optimization for
traveling salesman problem on the GPU. The experimental
results are shown in Section V. Finally, Section VI offers
concluding remarks.

II. ANT COLONY OPTIMIZATION FOR THE TRAVELING
SALESMAN PROBLEM

In this section, we describe a solution for TSP with ant
colony optimization. Specially, we explain an algorithm solv-
ing this problem by ant system (AS). Recall that in TSP, a
salesman visits n cities. and the salesman makes a tour visiting
each city exactly once to try to find the shortest possible tour.
In AS for TSP, ants are used as agents that perform distributed
search. Each ant visits each city exactly once, ending up back
at the starting city and then offers the tour as its solution. Each
ant has the following characteristic:

o An ant selects which city to visit, using a transition rule
that is a function of the distance to the city and the
quantity of pheromone present along the connecting path.

« Transitions to already visited cities are added to a visited
list and not allowed.

« When a tour is complete, the ant deposits a pheromone
trail along paths visited in the tour.

Using the characteristic of ants, AS performs the following
three steps; (i) initialization, (ii) tour construction and (iii)
pheromone update. First of all, initialization is performed, and
tour construction and pheromone update are repeated until
stopping criteria. Given n cities, the distances between the
cities, and m ants, the details of these three steps are spelled
out as follows.

A. Initialization

In the initialization step, the initial quantities of all the
pheromone trail are determined using the greedy manner [17]
as follows:

Cy
where L denotes all edges between cities and C is the total
length of a tour obtained by the greedy algorithm such that
starting from an arbitrary city as current city, the shortest edge
that connects current city and an unvisited city is selected. The
quantities of pheromone assigned to each edge between two
cities are initially set to a reciprocal of the average of C|.

(i, j) = V(i j) € L, (1)

B. Tour construction

In tour constriction, m ants independently visit each city
exactly once. Each ant starts at a city decided randomly,
and selects which city to visit probabilistically. A probability



pr(i,7) to visit city j from city ¢ for ant k is computed by
Eq. ().

pk(i’j) = {

where Ny (i) is a set of unvisited adjacent cities for ant & in
city i, and f(4,7) is a fitness between cities 7 and j

£(i.g)
Sy o JGD)
0

if j € Nk(l)

otherwise,

2)

£, 4) = [r (i, )G, )17, 3)
where 7(4,j) denotes a quantity of pheromone between cities
¢ and j, n(i,j) represents heuristic information which is a
reciprocal of the distance between cities ¢ and j, and o and
[ control the relative influence of pheromone versus distance.
These equations mean that when the quantity of pheromone
between cities ¢ and j is large and the distance between cities
i and j is short, the probability to visit city j becomes large.
Using this probability, each ant visits each city exactly once,
ending up back at the starting city. The method such that ants
select which city to visit using the above probability is well-
known as roulette-wheel selection [18]. Visiting cities with the
roulette-wheel selection, each ant constructs a tour.

C. Pheromone update

When all the ants complete tour -construction, the
pheromone assigned between cities is updated using informa-
tion of each tour. The update consists of pheromone evapora-
tion and pheromone deposit.

Pheromone evaporation is utilized to avoid falling into local
optima. Every quantity of pheromone is reduced with the
following equation;
where p is an evaporation rate of pheromone.

After the pheromone evaporation, for every pheromone
between cities, pheromone deposit is performed with the
results of the tour construction as follows;

7(i,§) — 7(i,5) + Y Ak(i,5) V(@,4) €L, (5)
k=1

where ATy (i,7) is a quantity of pheromone between cities 4
and j which is deposited by ant k. The quantity is computed
by

1

Ch
0

if e;; €Ty
otherwise,

ATy(i, j) = { (6)

where CY, is the tour length of ant k, and T}, is the tour of ant k.
This equation means that when an edge is included in shorter
tours and is selected by more ants in the tour construction, the
quantity of additional pheromone is larger.
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III. CoMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

CUDA uses two types of memories in the NVIDIA GPUs:
the global memory and the shared memory [19]. The global
memory is implemented as an off-chip DRAM of the GPU,
and has large capacity, say, 1.5-6 Gbytes, but its access latency
is very long. The shared memory is an extremely fast on-
chip memory with lower capacity, say, 16-48 Kbytes. The
efficient usage of the global memory and the shared memory
is a key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider the coalescing of
the global memory access and the bank conflict of the shared
memory access [20], [6]. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed in the same time. Thus,
threads should perform coalesced access when they access to
the global memory. Figure 1 illustrates the CUDA hardware
architecture.

Global Memory

T

Streaming
Multiprocessor

Core Core

Shared Memory

Shared Memory

CUDA hardware architecture

Fig. 1.

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid is
organized by multiple blocks, each of which has equal number
of threads. The blocks are allocated to streaming processors
such that all threads in a block are executed by the same
streaming processor in parallel. All threads can access to the
global memory. However, as we can see in Figure 1, threads
in a block can access to the shared memory of the streaming
processor to which the block is allocated. Since blocks are
arranged to multiple streaming processors, threads in different
blocks cannot share data in shared memories.

CUDA C extends C language by allowing the programmer
to define C functions, called kernels. By invoking a kernel,
all blocks in the grid are allocated in streaming processors,
and threads in each block are executed by processor cores
in a single streaming processor. In the execution, threads in
a block are split into groups of thread called warps. Each
of these warps contains the same number of threads and is
execute independently. When a warp is selected for execution,
all threads execute the same instruction. When one warp is
paused or stalled, other warps can be executed to hide latencies
and keep the hardware busy.

As we have mentioned, the coalesced access to the global
memory is a key issue to accelerate the computation. As
illustrated in Figure 2, when threads access to continuous



locations in a row of a 2-dimensional array (horizontal access),
the continuous locations in address space of the global memory
are accessed in the same time (coalesced access). However,
if threads access to continuous locations in a column (vertical
access), the distant locations are accessed in the same time
(stride access). From the structure of the global memory, the
coalesced access maximizes the bandwidth of memory access.
On the other hand, the stride access needs a lot of clock cycles.
Thus, we should avoid the stride access (or the vertical access)
and perform the coalesced access (or the horizontal access)
whenever possible.

to

t7
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horizontal access

to

tr
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CITTTTTTT
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coalesced access

17 .
0 vertical access

U S O

stride access

BRRERRR)
v
<

t7

2-dimensional array

Fig. 2. Coalesced and stride access

Just as the global memory is divided into several partitions,
shared memory is also divided into 16 (or 32) equally-sized
modules of 32-bit width, called banks (Figure 3). In the
shared memory, the successive 32-bit words are assigned to
successive banks. To achieve maximum throughput, concurrent
threads of a thread block should access different banks,
otherwise, bank conflicts will occur. In practice, the shared
memory can be used as a cache to hide the access latency of
the global memory.

Word 0 | Word 1 | Word2 | Word3 | Word4 | Word5 | Word 6 | Word7 Word 31

Word 32| Word 33 | Word 34 | Word 35 | Word 36 | Word 37 | Word 38 Word 39 Word 63

BankQ J Bank 1 A Bank2 A Bank3} Bank4 A Bank5 J Bank6 X Bank7 Bank 31

Fig. 3. The structure of the shared memory

IV. GPU IMPLEMENTATION

The main purpose of this section is to show a GPU imple-
mentation of AS for TSP. The Ideas of our implementation
to consider programming issues of the GPU system such as
coalesced access of global memory and shared memory bank
conflicts in Section III. Given n coordinates (z;,y;) of city 4
(0 < i < n—1), our implementation computes the shortest
possible route that visits each city once and returns to the
origin city. Our implementation consists of three CUDA parts,
initialization, tour construction, and pheromone update. We
describe the details of them as follows.
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A. Initialization

This part is an initialization process for the followings.
Given n coordinates (x;,y;) of city i, each distance d(3,j)
between cities ¢ and j and initial values of pheromone 7; ;
in Eq. (1) are computed. Also, initializing random seeds
for CURAND used in the following process is performed.
CURAND is a library that provides a pseudorandom number
generator on the GPU by NVIDIA [21].

B. Tour construction

Recall that in the tour constriction, m ants are initially
positioned on n cities chosen randomly. Each ant makes a tour
with roulette-wheel selection independently. Whenever each
ant visits a city, it determines which city to visit with roulette-
wheel selection. To perform the tour construction on the
GPU, we consider four methods, SelectionWithoutCompres-
sion, SelectionWithCompression, SelectionWithStochasticTrial,
and a hybrid method that is a combination of the above
methods. Let us consider the case when ant k is in city 4.
In advance, the fitness values f(7,5) (0 < 4,5 < n — 1) are
computed by Eq. (3) and stored to the 2-dimensional array
in the global memory. Also, the elements related to city <,
ie., f(4,0),..., f(i,n—1), are stores in the same row so that
the access to the elements can be performed with coalesced
access. In the tour construction, ant & (0 < k& < m — 1) makes
a tour index array t; such that element ¢ () stores the index
of the next city from city ¢ shown in Figure 4.

Tour
of 2515550545352

antk
Q

[ 01 2 3 45
t (i) |4|5|1|2|3|0|

Fig. 4. Representation of tour list

1) SelectionWithoutCompression: Each ant has an unvisited
list ug, w1, ..., uUn—_1 such that

| 0 if city j has been visited
i _{ 1 otherwise. @

To perform the roulette-wheel selection, when ant & is in city
1. we compute as follows;
Step 1: Calculate the prefix sums ¢;(0 < j <n —1) of the
fitness values for adjacent cities and a sentinel ¢_;
such that

q:{ o fliss)u; 0<j<n—1
/ 0

iy (®)

Step 2: Generate a random number r in [0, g,—1]-
Step 3: Find j such that ¢;_1 <r <g¢; (0<j<n-—1).
City j is selected as the next city.
Figure 5 shows a summary of SelectionWithoutCompression.
In Step 1, values 7(4,5) and n(i,j) (0 < j < n-—1) to
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Fig. 5. Parallel roulette-wheel selection in SelectionWithoutCompression

compute the fitness function in Eq. (3) are read from the
global memory by threads with coalesced access and stored
to the shared memory. After that, prefix sums in Eq. (8) are
computed, where the fitness values of visited cities are O
not to be selected. To avoid the branch instruction whether
the candidate of the next cities has been visited or not, we
multiply f(¢,j) and u; with the unvisited list in Eq. (7). In
our implementation, the prefix sum computation is performed
using the parallel prefix sum algorithm proposed by Harris
et al. [22], Chapter 39. It is an in-place parallel prefix sum
algorithm with the shared memory on the GPU. Also, it can
avoid most bank conflicts by adding a variable amount of
padding to each shared memory array index. On the other
hand, this method has a fault that the number of elements that
it can perform must be power of two. Therefore, when the
number of elements is a little more than power of two numbers,
the efficiency is decreased. For example, if the number of
elements is 4097, the method must perform for 8192 elements.
This fault can be ignored for small number of elements.
However, it cannot be ignored for large number. After that,
a uniform random number r in [0, g,_1] is generated with by
CURAND. Using the random number by CURAND, an index
Jsuch that g;_; < r < g; is searched and city j is the next city
to visit. In the search, we use a parallel search method based
on the parallel K -ary search [23]. The idea of the parallel K-
ary search is that a search space in each iteration is divided
into K partitions and the search space is reduced to one of the
partitions. In general, Binary search is a special case (K = 2)
of K-ary search. In our parallel search method, we divide the
search space into 32 partitions. Sampling the first elements of
each partition, a partition that includes the objective element
to search is found by 32 threads, i.e., 1 warp. After that the
objective element is searched from the partition by threads
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whose number is the number of elements in the partition.

The feature of this method is that the fitness values can be
read from the global memory with coalesced access. Although
the number of unvisited cities is smaller, in every selection to
determine the next city to visit, the roulette-wheel selection has
to be performed for both visited and unvisited cities. Namely,
the data related to both of the visited and unvisited cities
is necessary When the number of unvisited cities is smaller,
computing time is not reduced. In other words, it does not
depend on the number of visited cities.

2) SelectionWithCompression: The idea of this method is
to select only from unvisited cities excluding the visited cities.
Instead of the unvisited list in the above method, we use an
unvisited index array that stores indexes of unvisited cities.
When the number of unvisited cities is n’, The array consists
of elements vg, v1, ..., v, _1 and each element stores an index
of one of the unvisited cities. When a city is visited, the
city has to be removed from the index array. The removing
operation takes O(1) time by overwriting the index of the
next city with that of the last element, then removing the
last element (Figure 6). Using the index array of unvisited
cities, it is not necessary to read the data related to the
visited cities to compute the prefix sums in Eq. (8) though
SelectionWithoutCompression requires data related to both
visited and unvisited cities. Therefore, when the number of
unvisited cities is smaller, the computing time becomes shorter.
However, the global memory access necessary to compute the
prefix sums may not be done with coalesced access because
the contents of the index array are out of order using the
above array update. Therefore, when the number of unvisited
cities is large, computing time of SelectionWithCompression
is perhaps slower than that of SelectionWithoutCompression.

Unvisited index array Thenextcity is3

lof1f2]3]4]5]
—

Overwrite the next city
with the |ast element

[of1]o]sfa]s]

G Remove the last element

lof1]2]s[4a]

Fig. 6.
next city.

Update of the unvisited index array when city 3 is selected as the

3) SelectionWithStochasticTrial: In the above two methods,
whenever each ant visits a city, the prefix sum calculation has
to be performed. The prefix sum calculation occupies the most
of the computing time of the tour construction. The idea of
this method is to avoid the prefix sum calculation as much
as possible using stochastic trial. The details of the stochastic
trial are shown as follows.

Before ants start visiting cities, the prefix sums for each city



are calculated such that
j .
.. _ ;S
q/<l7]) = { 0 s=0 f(Z )

where all the cities have been unvisited, i.e., u; =1 0<j<
n — 1) in Eq. (8). The results are stored to the 2-dimensional
array in the global memory such that the prefix sums for city
i to each city, ¢(¢,0),...,¢'(i,n — 1), are stored to the same
row to be read with coalesced access. When an ant is in city ¢,
to select the next city, the following steps are repeated until the
next city is determined or the number of the iteration exceeds
w

i ©)

Step 1: Generate a random number r in [0, ¢'(i,n — 1)].
Step 2: Find j such that ¢’(4,j — 1) < r < ¢'(4,75) (0 <
j <m-—1).If city j is unvisited, it is selected as the
next city. If not, these steps are performed again.
In Step 2, the unvisited list (Eq. (7)) is used to find whether
the city has been visited or not by the parallel search shown in
the above methods. If the next city is not determined after the
w-time iteration, the next city is selected by SelectionWith-
outCompression. These steps are similar to the roulette-wheel
selection in the above methods. The difference point is that it
is not always to determine the next city since a candidate of
the next city found by the random selection may have been
visited. In followings, the above operation is called stochastic
trial. SelectionWithStochasticTrial repeats the stochastic trial
at most w times. If the next city cannot be determined, it is
selected by SelectionWithoutCompression. When the number
of unvisited city is smaller or some of the fitness values of
visited cities are larger, almost the trial cannot select the
next city. However, the computing time is much shorter than
that of the prefix sum calculation. Therefore, if the next city
can be determined in the above steps within w times, the
total computing time can be reduced by this method. It is
important for this method to determine w. This is because
w has to be determined considering the balance between the
computing time of the iteration of the stochastic trial and that
of SelectionWithoutCompression performed when the next
city cannot be determined. In Section V, we will obtain the
optimal times w by experiments.

4) Hybrid Method: In SelectionWithStochasticTrial, how-
ever, when the number of visited cities is large, the next city
may not be determined by the stochastic trial and has to
be selected by SelectionWithoutCompression. Therefore, we
introduce a hybrid method such that when the number of vis-
ited city is small, SelectionWithStochasticTrial is performed.
Then, SelectionWithStochasticTrial is switched to Selection-
WithoutCompression. After that the next city is determined
by SelectionWithCompression until all the cities are visited.
The reason that SelectionWithCompression is performed after
SelectionWithStochasticTrial is that when the number of un-
visited cities is small, SelectionWithCompression is performed
faster than SelectionWithoutCompression. In the followings,
we call such method hybrid method. An important point of
this hybrid method is to determine the timing when Selection-
WithStochasticTrial is switched such that the computing time
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is minimized. In Section V, we will obtain the optimal timing
by experiments.

C. Pheromone update

In the followings, we show a GPU implementation of
pheromone update. Recall that pheromone update consists
of pheromone evaporation and pheromone deposit. In our
implementation, the values of pheromone 7(i,7) (0 < i <
j < n —1) are stored in a 2-dimensional array, which is
a symmetric array, that is, 7(¢,) 7(J,4), in the global
memory and are updated by the results of the tour construction.
Making the array symmetric, the elements related to city ¢,
ie., 7(¢,0),7(3,1),...,7(i,n—1), are stores in the same row
so that the access to the elements can be performed with
coalesced access. Our implementation consists of two kernels,
PheromoneUpdateKernel and SymmetrizeKernel.

1) PheromoneUpdateKernel: This kernel assigns n blocks
that consist of multiple threads to each row of the array and
each block performs the followings independently. Figure 7
shows a summary of the pheromone update on the GPU for
a block that perform pheromone update for city 0. Threads in
block ¢ read 7(4,0),7(i,1),...,7(¢,n — 1) in the i-th row
with coalesced access, and then store them to the shared
memory. When the values are stored to the shared memory,
each value is halved in advance since they are doubled in the
following kernel, SymmetrizeKernel. After that, pheromone
evaporation is preformed, i.e., each value is reduced by Eq. (4)
by threads in parallel. To perform pheromone deposit, block
i reads the values to(2),¢1(4),...,tm—1(¢) in the i-th row of
the tour lists. The read operation is performed with coalesced
access by threads. Also, each total tour length of each ant
Cy,C1,...,Cp—1 stored in the global memory is read. After
that threads add a quantity obtained by Eq. (6) to the cor-
responding values of pheromone in parallel. In the addition,
some threads may add to the same pheromone simultaneously.
To avoid it, we use the atomic add operation supported by
CUDA [19]. After the addition, the values of pheromone
are stored back to the global memory. Note that since the
2-dimensional array that stores the pheromone values are
symmetry, if addition to 7(4, ) is performed, that to 7(j, ¢) has
to be also performed. However, the above deposit operation
adds to either 7(i,7) or 7(4,7). To obtain the correct results,
SymmetrizeKernel is performed.

2) SymmetrizeKernel: This kernel symmetrizes the array
for the results of PheromoneUpdateKernel. More specifically,
summing corresponding two elements that are symmetric, each
value of symmetric elements is made identical. In this kernel,
to make the access to the global memory coalesced, the 2-
dimensional array that stores pheromone values is divided
into subarrays whose size is 32 x 32. We assign one block
to two subarrays that are symmetric or one subarray that
includes symmetric element. Blocks symmetrize the whole
array subarray by subarray. To symmetrize the subarrays, one
array has to be transposed. For the transposing, we utilize an
efficient method proposed in [24]. The method transposes a 2-
dimensional data stored in the global memory via the shared
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Fig. 7. A summary of PheromoneUpdateKernel

memory with coalesced access and avoidance of bank conflict
on the GPU. Note that when the symmetrization is performed,
each value is doubled since the original values are added twice.
Therefore they are halved in advance in the previous kernel,
PheromoneUpdateKernel.

V. PERFORMANCE EVALUATION

We have implemented our AS for the TSP using CUDA C.
We have used NVIDIA GeForce GTX580 with 512 processing
cores (16 Streaming Multiprocessors which has 32 processing
cores) running in 1.544GHz and 3GB memory. For the purpose
of estimating the speed up of our GPU implementation, we
have also implemented a conventional software approach of
AS for the TSP using GNU C. We have used Intel Core i7
860 running in 2.8GHz and 3GB memory to run the sequential
algorithm for the AS. We have evaluated our implementa-
tion using a set of benchmark instances from the TSPLIB
library [25]. In the following evaluation, we utilize 8 instances:
d198, a280, lin318, pcb442, rat783, pr1002, and pr2392 from
TSBLIB. Each name consists of the name of the instance and
the number of cities. For example, pr/002 means that the name
of the instance is pr and the number of cities is 1002. The
parameters of ACO, «, (3, and p in Eq. (3) and Eq. (4), are
set to 1.0, 2.0, and 0.5, respectively. Also, the number of used
ants m is set to the number of cities. Those parameters are
recommended in [26]. In CUDA, it is important to determine
the number of blocks and the number of threads in each block.
It greatly influences the performance of the implementation
on the GPU. In the followings, we select the optimal numbers
obtained by experiments. We first explain the performance of
tour construction and pheromone update, and then the results
of overall performance are shown.

A. Evaluation of tour construction

Before performance of tour construction is evaluated, we de-
termine the optimal parameters. One is an upper limit of times
of iteration how many times the stochastic trial is repeated
if the next city is not determined in SelectionWithStochastic-
Trial. The other is timing when SelectionWithStochasticTrial is
switched to SelectionWithCompression in the hybrid method.
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To obtain an optimal upper limit of iteration of the stochastic
trial if the next city is not determined in SelectionWithStochas-
ticTrial, we evaluated the number of times necessary to deter-
mine the next city in a tour construction for the pheromone
values obtained after the tour construction and pheromone
update were repeated 100 times for pr1002. Figure 8 is a graph
that shows a histogram of the number of city and its cumulative
histogram of the percentage of cities to the number of times
of iteration how many times the stochastic trial is repeated.
For example, when the number of times of iteration is 5, the
number of cities is about 25 and the percentage of cities is
about 84%. This means that in about 500 cities, the next city
was determined by the stochastic trial 5 times and in 84%
cities, it was determined by the stochastic trial within 5 times.
From the figure, in approximately half of cities, the next city
can be determined by the stochastic trial one time. Also, in
about 90% cities, the next city can be selected within about
32 times. In several cities, the next city cannot be determined
when the stochastic trial has to be repeated more than 2000
times. Considering the balance of computing time between the
stochastic trial and SelectionWithoutCompression when the
next city cannot be determined, in the following experiments,
we set 8 times to the upper limit of times of iteration.

Number of cities Cumulative percentage of cities

600 100%

90%

vvvvvv

500

- 80%

- 70%

- 60%

300 A 50%

m Number of cities - 40%

=— Cumlative percentage of cities - 30%
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0%

9 11 13 15 17 19 21 23 25 27 29 31
Number of times of iteration

Fig. 8. A histogram of the number of city and its cumulative histogram of
the percentage of cities to the number of times of iteration of the stochastic
trial

To obtain the timing when SelectionWithStochasticTrial is
switched to SelectionWithCompression in the hybrid method,
we measured the computing time of tour construction for
various percentages when SelectionWithStochasticTrial is
switched to SelectionWithCompression. Figure 9 shows the
computing time of tour construction for various instances.
According to the figure, the percentage of the visited cities
is larger, the computing time is shorter and if it is closed to
100%, it becomes larger. According to Figure 9, computing
time is minimized by switching the method when about 85%
cities are visited. Therefore, we switch from SelectionWith-
StochasticTrial to SelectionWithCompression when 85% cities



are visited.
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Fig. 9. Computing time of tour construction for the various percentages when
SelectionWithStochasticTrial is switched to SelectionWithoutCompression for
pr1002 with various w

To compare the performance among our proposed tour
construction methods, we have evaluated the computing time
of them. Table I shows the computing time of tour con-
struction with various methods for pr1002. The computing
time of SelectWithCompression is a little shorter than that
of SelectWithoutCompression. Since the computing time of
SelectWithCompression becomes shorter when the number of
unvisited cities is small, the total computing time becomes
shorter. Compared to the methods without the stochastic trial,
the computing time of the methods with the stochastic trial
is approximately halved. In addition, the computing time of
the hybrid method is approximately 10% shorter than that of
SelectWithStochasticTrial.

TABLE I
COMPUTING TIME OF TOUR CONSTRUCTION FOR PR1002
Tour construction method Time[ms]
SelectWithoutCompression 235.43
SelectWithCompression 217.94
SelectWithStochasticTrial 96.37
Hybrid method 86.43

Table II shows the computing time of tour construction for
various instances. From 198 to 1002 cities, when the number
of cities is larger, the speed-up factor is larger. However, The
speed-up factor for 2392 cities is smaller than that for 1002
cities. This is because in the parallel prefix sum computation
shown in Section IV can be performed only for power of two
numbers. Therefore, for the instance of which number of cities
is 2392, the parallel prefix sum computation for 4096 elements
must be performed. Therefore, approximate half of elements
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are redundant. Since in CPU implementation, the redundant
elements are not necessary to compute the prefix sum, the
computing time of GPU implementation becomes longer, that
is, the speed-up factor becomes smaller.

TABLE I
COMPUTING TIME OF TOUR CONSTRUCTION FOR VARIOUS INSTANCES

Instance (# cities) | CPU[ms] | GPU[ms] | Speed-up
d198 (198) 19.84 2.58 7.69
a280 (280) 47.05 4.95 9.50
1in318 (318) 95.15 8.86 10.74
pcbd42 (442) 180.61 11.35 15.92
rat783 (783) 1215.31 56.38 21.56

pr1002 (1002) 3784.43 86.43 43.79
pr2392 (2392) 58452.20 2078.98 28.12

B. Evaluation of pheromone update

Table III shows the computing time of pheromone update
for various instances. The computing time of both the CPU and
GPU implementation is Our GPU implementation can achieve
speed-up factors of 22 to 67. Compared to the computing time
of tour construction, the computing time of pheromone update
is much shorter.

TABLE III
COMPUTING TIME OF PHEROMONE UPDATE

Instance (# cities) | CPU[ms] | GPU[ms] | Speed-up
d198 (198) 0.963 0.036 26.64
a280 (280) 1.384 0.060 22.92
1in318 (318) 2.797 0.070 39.88
pcbd42 (442) 4.692 0.113 41.43
rat783 (783) 16.770 0.320 52.37

pr1002 (1002) 34.877 0.520 67.08
pr2392 (2392) 222.762 5411 41.17

C. Evaluation of overall performance

Table IV shows overall performance that is the total comput-
ing time of AS for various instances. Each execution includes
the initialization and 100 times iteration of tour construction
and pheromone update. Since the computing time of tour
construction is much larger than other process, each speed-
up factor is similar to that of tour construction. Our GPU
implementation can achieve speed-up factors of 7.52 to 43.47
over the CPU implementation.

In the related works of ACO for TSP shown in Section I,
several GPU implementations have been proposed. Since those
implemented methods, used instance, and utilized GPUs differ,
we cannot directly compare our implementation with them.
However, GPU implementations proposed in papers [14],
[15], [16] achieved the maximum speed-up factor of 23.9,
23.5, and 20.0 over their CPU implementations, respectively.
Since the speed-up factor we achieved is 43.47, our GPU
implementation is more effective than them.



TABLE IV
TOTAL COMPUTING TIME OF OUR IMPLEMENTATION WHEN TOUR
CONSTRICTION AND PHEROMONE UPDATE ARE REPEATED 100 TIMES

Instance (# cities) CPU[ms] GPU[ms] | Speed-up
d198 (198) 2080.72 26391 7.52
2280 (280) 4844.59 505.51 9.31
1in318 (318) 9797.03 897.29 10.61
pcb44?2 (442) 18534.37 1153.95 15.66
rat783 (783) 123220.58 5673.15 21.43

pr1002 (1002) 381949.72 8706.32 43.47
pr2392 (2392) 5867605.87 | 208478.18 28.04

VI. CONCLUSIONS

In this paper, we have proposed an implementation of the ant
colony optimization algorithm, especially AS, for the traveling
salesman problem on the GPU. In our implementation, we
have considered many programming issues of the GPU archi-
tecture such as coalesced access of global memory and shared
memory bank conflicts. In addition, we have introduced a
method with the stochastic trial in the roulette-wheel selection.
We have implemented our parallel algorithm in NVIDIA
GeForce GTX 580. The experimental results show that our
implementation can perform the AS for 1002 cities, that
repeats tour construction and pheromone update 100 times, in
8.71 seconds, while a conventional CPU implementation runs
in 381.95 seconds. Thus, our GPU implementation attains a
speed-up factor of 43.47.

Future works include GPU implementations for various
algorithms of ant colony optimization such as MMAS, ACS,
and AS with the idea of nearest neighbor to obtain further
acceleration and accuracy. In addition to TSP, other combina-
torial optimization problems such as the quadratic assignment
problem, etc. are applied by our method.
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Accelerating Computation of Euclidean Distance Map using the GPU with Efficient
Memory Access
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1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527 Japan

Abstract—Recent Graphics Processing Units (GPUs), which metric. We refer readers to Figure 1 for an illustration of
have many processing units, can be used for general purpose Eyclidean Distance Map. Assuming that the poiptand
parallel computation. To utilize the powerful computing ability, ¢ of the plane are represented by their Cartesian coordi-

GPUs are widely used for general purpose processing. Since
GPUs have very high memory bandwidth, the performance Nates (z(p),y(p)) and (z(g),y(q)), as usual, we denote

of GPUs greatly depends on memory access. The main con- the Euclidean distance between the poiptsand ¢ by

tribution of this paper is to present a GPU implementation  d(p,q) = /(z(p) — 2(¢))% + (y(p) — y(q))2.
of computing Euclidean Distance Map (EDM) with efficient

memory access. Given a 2-dimensional binary image, EDM is

a 2-dimensional array of the same size such that each element V10 | 3 V10| V5|2 H‘E V5 | 3 [Vio
is storing the Euclidean distance to the nearest black pixel. Vsl2]V512 )1 1]2]2|45
In the proposed GPU implementation, we have considered 2 I VP IV YA O Y7 N O YD)
many programming issues of the GPU system such as coalesced in 1]12)2)2 )21 “f
access of global memory and shared memory bank conflicts. Ll el e
To be concrete, transposing 2-dimensional arrays, which are HEIEIE n 1]2]5]2]5
temporal data stored in the global memory, with the shared 1018 |52 | 1 |2 5] 3] 3 [Vio
memory, the main access from/to the global memory enables

to be performed by coalesced access. In practice, we have V10 135 112 Lo [VS |51 2 105 |8
implemented our parallel algorithm in the following three 2] H 12 1ol S
modern GPU systems: Tesla C1060, GTX 480 and GTX Viol[vs [val 1 [ ][+ Kl 1 ]2

580, respectively. The experimental results have shown that,
for an input binary image with size of 9216 x 9216, our Figurel. Euclidean Distance Map
implementation can achieve a speedup factor of 54 over the

sequential algorithm implementation. ] S _ _
As is known to us, the computing time is an important is-

sue in the real-time image processing, especially for images
with large size. For example, the real-time image processing
is the main part of many industrial applications such as
the vision-guided robot bin-picking system etc. Actually the
Recent Graphics Processing Units (GPUs), which haveision-guided robot bin-picking is one of the systems with
a lot of processing units, can be used for general purposkighest interest of the industry. In order to positioning bins
parallel computation. Since GPUs have very high memoryprecisely, bins with markers can be used. Especially, circle
bandwidth, the performance of GPUs greatly depends omarkers are used for robot vision [11] since a circle must be
memory access. CUDA (Compute Unified Device Architec-seen as an ellipse from any angle. Thus, a fast and reliable
ture) [1] is the architecture for general purpose parallel comellipse detection algorithm is needed. The Euclidean distance
putation on GPUs. Using CUDA, we can develop paralleltransform can be used for the evaluation of the estimated
algorithms to be implemented in GPUs. Therefore, manyellipses in real time [12]. Therefore we also need a faster
studies have been devoted to implement parallel algorithmalgorithm to implement the Euclidean distance transform.
using CUDA [2], [3], [4], [5], [6], [71, [8], [9], [10]. Many algorithms for computing EDM have been proposed
In many applications of image processing such as blurrindn the past, such as sequential algorithm [13], [14], [15], [16]
effects, skeletonizing and matching, it is essential to measurand parallel algorithm [17], [18], [19]. Breat al. [13] and
distances between featured pixels and nonfeatured pixel€henet al.[14], [15] have presente®(n?)-time sequential
For a 2-dimensional binary image with sizerokn, treating  algorithm for computing Euclidean Distance Map. Since all
black pixels as featured pixels, Euclidean Distance Mappixels must be read at least once, these sequential algorithms
(EDM) assigns each pixel with the distance to the neareswith time complexity of O(n?) is optimal. Since in any
black pixel using Euclidean distance as underlying distanc&DM algorithm, each of the? pixels has to be scanned at

KeywordsEuclidean distance map; proximate points; GPU;
coalesced memory access; bank conflict; CUDA

I. INTRODUCTION
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leastonce. Roughly at the same time, Hirata [16] presented aize of 10000 x 10000, the proposed parallel algorithm can
simplerO(n?)-time sequential algorithm to compute the dis- achieve 18 times speedup in the multicore system, compar-
tance map for various distance metrics including Euclideaning with the performance of general sequential algorithm.
four-neighbor, eight-neighbor, chamfer, and octagonal. OMeanwhile, for the same input image, the proposed parallel
the other hand, for accelerating sequential ones, numerowgorithm can achieve 5 times speedup in that of GPU
parallel EDM algorithms have been developed for varioussystem. However, it is not enough to cope with the above
parallel model. Leeet al. [20] presented am(log2 n)-time  programming issues. Especially, in our implementation, 2-
algorithm usingn? processors on the EREW PRAM. Pavel dimensional arrays are mainly accessed from/to the global
and Akl [19] presented an algorithm running @ (logn) memory four times. However, two times of them cannot reap
time and using:? processors on the EREW PRAM. Clearly, the benefit of the coalesced access.

these two algorithms are not work-optimal. Fujiwaeh The main contribution of this paper is to show an im-
al. [17] have presented a work-optimal algorithm runningproved GPU implementation of the algorithm with more
in O(logn) time using lgf;n EREW processors and in efficient memory access. In our new implementation, we
O(loloinn) time using"2 llzgl;;gn C'RCW processors. Later, have considered programming issues of the GPU system
Haygshgiet al.[18] have exhibited a more efficient algorithm such as coalesceq access for global memory and shared
running in O(logn) time using % processorson the ~Memory bank conflicts. The new idea of our implementation

. . . 2 is that we have improved the access for 2-dimensional arrays
EREW PRAM and mO(log logn) time USING 1o7'fogm PIO- ._that are temporal data stored in the global memory which
cessors on the PRAM. Since the product of the computin

i dth ber of I612) th laorith %annot be done with coalesced access in the previous im-
ime and the number of processorgig:*) these algorithms plementation. To be concrete, transposing the 2-dimensional

?re work opt)tl[)naI: Also, ':j was Iproved that Iihe (ipmﬁ)_ltjtm_garrays with the shared memory, the access enables to be
Ime cannot be improved as long as work optimality ISperformed by coalesced access. We have implemented and

& . .
. . . aluated our proposed parallel EDM algorithm in the fol-
algorithms are work-time optimal. _Recently, Chetral. [21J lowing three GPU systems, Tesla C1060 [24], GTX 480 [25]
have prpposed tW.O parallel glgqnthms for EDM on I"ne"’}rand GTX 580 [26], respectively. The experimental results
Array W'th Reconfigurable Pipeline _Bu? Syf)tekrp. [22]' The"have shown that for an input binary image with size of
first algorithm can computes EDM i0( 15,5, ) time 9216 x 9216, our implementation can achieve a speedup

logloglogn
S ;
usingn* processors and the second algorithm can computg, o of 54 over the sequential algorithm implementation.
Also, we have presented that the density of black pixels in

EDM in O(lognloglogn) time using i is; Processors.
In practice, now many applications have employed emergan input image affects the performance of the proposed GPU
ing GPUs (Graphics Processing Unit) as real platforms tqmplementation.
achieve an efficient acceleration. In GPU implementation, The remainder of this paper is Organized as follows:
there are some programming issues of the GPU system su&ction Il introduces the proximate points problem for Eu-
as coalesced access of global memory and shared memagjdean distance metric and discusses several technicalities
bank conflicts [23]. Coalesced access is necessary to hidfat will be crucial ingredients to our subsequent parallel
the access latency of the global memory. When sequenti®#pM algorithm. Section Ill shows the proposed parallel
threads access Sequential and aligned values in the Oﬁ'Cnmgorithm for Computing Euclidean distance map of a 2-
global memory, the GPU will automatically combine them dimensional binary image. Section IV introduces the features
into a single transaction. An on-chip shared memory isof the GPU system in CUDA. In Section V, we review our
divided into 16 or 32 equally-sized modules of 32-bit width, previous GPU implementation. Section VI exhibits a new
called banks. In the on-chip shared memory, the successi\§PU implementation considering programming issues for
32-bit words are assigned to successive banks. To avoighe GPU system. Section VII shows the performance of
bank conflicts and achieve maximum throughput, concurrenthe new GPU implementations on different GPU systems.

threads should access different banks. Finally, Section VIII offers concluding remarks.
In our previous paper [5], we have shown an optimal
parallel algorithm for computing Euclidean Distance Map Il. PROXIMATE POINTS PROBLEM

(EDM) of a 2-dimensional binary image. Using proximate In this section, we review the proximate problem [18]
points problem as preliminary foundation, we have propose@long with a number of geometric results that will lay
a simple but efficient parallel EDM algorithm which can the foundation of our subsequent algorithms. Throughout,
achieveO(%) time usingk processors. To evaluate the per- we assume that a point is represented by its Cartesian
formance of the proposed algorithm, we have implementedoordinatez(p), y(p)).

it in a Linux server with four Intel hexad-core processors Consider a collection? = {py,ps,...,pn} Of n points
and a modern GPU system, respectively. The experimentalorted byz-coordinate, that isz(p1) < z(p2) < ... <
results have shown that, for an input binary image withxz(p,). We assume, without loss of generality, that all the
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Figure2. Proximate intervals

points in P have distincte-coordinates and that all of them
lie above thex-axis. The reader should have no difficulty

computed byO(1) time. For example, as shown in Figure 3,
the coordinates op; andp; are given. The coordinates of
the midpoint ofp; andp; can be computed in the formulas:
Tmia = E22) and g0 = (y’+y7 . The slope of the
line which crosses the poin'@ and p; can be computed
by the formula:o = (gf v) here thea represents the
slope of the line. Further the slope of the perpendicular
blsector line ofp; andp; can be computed by the formula:
B = (””7 %) here thed represents the slope of
the perpendlcular blsector line. Finally the perpendicular
bisector line ofp; andp; can be computed by the formula:

y= ﬁ(m xmld)+ymld ('Lj J/z) (x (-LL';‘LJ))+ (yl+yj)

to confirm that these assumptions are made for conveniencehe z-coordinateof the mtersectlon point of the perpend|c-

only and do not impact the complexity of our algorithms.

Recall that for every poinp; of P the locus of all the
points in the plane that are closer g than to any other
points in P is referred to as th&oronoi polygonassociated
with p; and is denoted by/ (). The collection of all the
Voronoi polygons of points irP partitions the plane into the
Voronoi diagram ofP (see [27], p. 204). Lef;, (1 <i < n),
be the locus of all the pointg on the xz-axis for which
d(q,p;) < d(q,p;) for all p;, (1 <j <mn). In other words,
q € I; if and only if ¢ belongs to the intersection of the
axis withV'(4), as illustrated in Figure 2. In turn, this implies
that I; must be an interval on the-axis and that some of
the intervalsl;, (2 < i < n — 1), may be empty. A point
p; of P is termed aproximate pointwhenever the interval
1; is nonempty. Thus, the Voronoi diagram Bf partitions
the z-axis into proximate intervals. Since the points &f
are sorted byz-coordinate, the corresponding proximate
intervals are ordered, left to right, a6 : Iy, 5, ..., I,,.
A point ¢ on the z-axis is said to be @&oundary point
betweenp; andp; if ¢ is equidistance tg; and p;, that
is, d(p;, q) = d(pj,q). It should be clear that is boundary
point between proximate pointg andp; if and only if the
q is the intersection of the (closed) intervdlsand I;. To
summarize the previous discussion, we state the followin
result;

Proposition 2.1: The following statements are satisfied:

1) Each ]; is an interval on thec-axis;

2) The intervalsiy, I, ..., I,, lie on z-axis in this order,
that is, for any nonempty; and I; with i < j, I; lies to the
left of I;.

3) If the nonempty proximate intervals and I; are ad-
jacent, then the boundary point betwegrandyp; separates
I; U Ij into I; and Ij.

ular bisectgr line and the-axis can be obtained as follow:
Tinter = % This intersection point is also the
boundary point ob, andpj Therefore the coordinate of the

- x —Lz
boundary point is i 2“’(’2]“%) ) , 0). The coordinate of

:: Intersection Point (Xjer,0)  X-aXis

Perpendicufar bisector line
of P;and P;

Figure3. Perpendicular bisector line of two points

She boundary point can be computeddr{l) time using a

single processor.

Given three point®;, p;, pr With ¢ < j < k, we say that
p; is dominatedby p; and p, wheneverp; fails to be a
proximate point of the set consisting of these three points.
Clearly, p; is dominated byp; and p;, if the boundary of
p; andp; is to the right of that ofp; and p;. Since, the
boundary of any two points can be computedfl) time,
therefore the task of deciding for every triplg;, p;, px),
whetherp; is dominated by, andp;, takesO(1) time using
single processor.

Consider a collectio® = {p1, pa, ..., pn } Of points in the

Referring again to Figure 2, among the seven points, fivgplane sorted by:-coordinate, and a point to the right of

points p1, p2, ps, pg and p; are proximate points, while the
others are not. Note that the leftmost poit and the
rightmost pointp,, are always proximate points.

P, that is, such that:(p;) < z(p2) < ... < z(pn) < z(p).
We are interested in updating the proximate intervalg?of
to reflect the addition op to P, as illustrated in Figure 4.

Itis also clear that, the boundary of any two points can be We assume, without loss of generality, that all point$in
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Figure4.

lllustrating the addition op to P = {p1,p2,p3,pa}

are proximate points and Iét, I, ..., I, be the correspond-
ing proximate intervals. Further, let, 5, ..., I;,, I, be the
updated proximate intervals df U {p}. Let p, be a point
such that/; and I, are adjacent.

Lemma 2.2: There exists a unique pointpgfof P such

that:

o The only proximate points ofP U {p} are
D1,D2; s Dis D-

o For 2 < j <4, the pointp; is not dominated by;_,
and p. Moreover, forl < j <i-—1, IJ’- =1Ij.

e Fori < j <n, the pointp; is dominated by;_; and
p and the intervall’ is empty.

« I and I, are consecutive on the-axis and are
separated by the boundary point betwegrand p.

We show an intuitive proof of the lemma by geometry. As

shown in Figure 5(a), the ling,p andline p,,—1p,, denote
the perpendicular bisector lines of the point p§ir,, p} and
the point pair{p,—_1,p.}. The intersection op,p andthe
z-axis is located left to the intersection pf,_1p,, andthe
z-axis. It implies the proximate interval of, is empty.

Pn
.

. \‘\ 7 oP

X-axis

(a)

o i op

X-axis

Figure5. Perpendicular bisector lines

repeat the procedure until find a poipt, 1 < i <n—1,its
proximate interval is nonempty, see Figure 5(c). As shown in
the figure, the ling; _1p; denotegshe perpendicular bisector
line of the point pair of{p;_1, p;} and the linep;p denotes
the perpendicular bisector line of the point pair £f;, p}.

It is clear that the intersection @gfp and x-axis is located
right to the intersection of;_1p; and z-axis. It means the
proximate interval op is decided. The proximate interval of
p; is adjacent to the proximate interval @f The intersection
of p;p andz-axisis the boundary point of; andp. It also
imply that the pointp can not affect the proximate interval
of p;, wherel <j <i—1.

Let P = {p1,p2,...,pn} be a collection of proximate
points sorted byz-coordinate and lep be a point to the
left of P, that isz(p) < z(p1) < x(p2) < ... < z(pn).
For further reference, we now take note of the following
companion result to Lemma 2.2. The proof is identical and,
thus, omitted.

Lemma 2.3: There exists a unique pointpbf P such
that:

« The only proximate points ofP U {p} are

P, Pi;Pi+1;5 -3 Pn-
o For i < j <mn, the pointp; is not dominated by and
pj+1. Moreover, fori +1 < j <n, I} = I;.

» For1 < j <, the pointp; is dominated by andp;1

and the intervall’; is empty.

o I, and I; are consecutive on ther-axis and are

separated by the boundary point betweeand p;.

The unique pointp; whose existence is guaranteed by
Lemma 2.2 is termed theontact pointbetweenP and p.
The second statement of Lemma 2.2 suggests that the task
of determining the unique contact point betweBnand a
point p to the right or the left ofP reduces, essentially, to
binary search.

Now, suppose that the sdt = {pi,pa,..., P2}, With
x(p1) < z(p2) < ... < x(p2y) is partitioned into two subsets
P, = {p17p27~-~7pn} and Pr = {pn+17p’n+27~--7p2n}-

We are interested in updating the proximate intervals in
the process or merging®;, and Pgr. For this purpose,
let I1,15,....,I, and I,,11, Inyo, ..., I2, be the proximate
intervals of P, and Pg, respectively. We assume, without
loss of generality, that all these proximate intervals are
nonempty. Letl, I}, ..., I5, be the proximate intervals of
P = P;, U Pr. We are now in a position to state and prove
the next result which turns out to be a key ingredient in our
algorithms.

Lemma 2.4. There exists a unique pair of proximate

Now we draw the perpendicular bisector lines of thePoINtSp; € P andp; € Pr such that

point pair of {p,,_2, p,—1} and the point pair ofp,—1, p},
they are denoted by lin@, 2p,_1 and line p,_1p, see
Figure 5(b). The intersection @f,—1p andthe z-axis is also
located left to the intersection @, —5p,,—1 andthe x-axis.
It means the proximate interval @f, ; is also empty. We
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« The only proximate points

P1,P25 -3 DisPjs -y P2n-
o Il 4., Ij_areempty, and; = I for 1 <k <i-—1
andj+ 1<k <2n.

« The proximate intervalg; and I are consecutive and

inP, U Pr are



are separated by the boundary point betweggnand Lemma 2.5 suggests a simple, binary search-like, ap-
Dj- proach to finding the contact points andp; between two
setsP;, and Pg. In fact, using a similar idea, Breu et al. [13]
proposed a sequential algorithm that computes the proximate
points of ann-point planar set irO(n) time. The algorithm

in [13] uses a stack to store the proximate points found.

Proof: Let: be the smallest subscript for whigh € Py,
is the contact point betwedd;, and a point inPg. Similarly,
let j be the largest subscript for which the pojnte P is
the contact point betweeRz and some point irP;,. Clearly,

no point in P, to the left ofp; can be proximate point aP. [1l. PARALLEL EUCLIDEAN DISTANCE MAP OF
Likewise, no point inPg to the left ofp; can be a proximate 2-DIMENSIONAL BINARY IMAGE
point of P.

k o A binary imagel of sizen x n is maintained in an array

Finally, by Lemma 2.2, every point i;, to the left ofp; b, (1 <i,j<n) Itiscustomary to refer to pixeli, 5)
must be _a p_roximate poin_t aP. Similarly, by Lemma_ 2.3, aéjblacIZif bmf: 1 and aswhite if b;; = 0. The rows
every point in P to the right ofp; must be a proximate ¢ the jmage will be numbered bottom up starting from 1.
point of P, and proof of the lemma is complete. B |ikewise, the columns will be numbered left to right, with

The points p; and p; whose existence is guaranteed by cojymn 1 being the leftmost. In this notation, pixel ;
Theorem 2.4 are termed thentact pointsbetweenf’, and s in the south-west corner of the image, as illustrated in
Pr. We refer th_e reader to Figure 6 for an illustration. Here’Figure 7(a). In Figure 7(a), each square represents a pixel.
the contact points betweef;, = {pi,p2,ps,ps,ps} @nd  For this binary image, its final distance mapping array is
Pr = {pe,p7,ps, po, pro} areps andps. shown in Figure 7(b).
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(a) Binary image (b) Mapping array

Figure7. A binary image and its mapping array

The Voronoi mapassociates with every pixel i the
closest black pixel to it (in the Euclidean metric). More
formally, the Voronoi map off is a functionv : I — I

such that, for everyi, j), (1 <4,j <n), v(i,j) =v(i',j)
(b) Merge of two point sets and their contact points if and only if

Figure 6. lllustrating the contact points between two sets of points d((z’,j), (i',j’)) _ min{d((i,j), (i”,j”)) | bi”7_j” — 1}’

whered((,7), (i, j')) = /(i = )2 + (j — j/)* is the Eu-
Next, we discuss a geometric property that enables thglidean distance between pixels j) and (i/, ;).
computation of the contact poinis and p; between Py, The Euclidean Distance Mapf image! associates with
and Pr. For each poinp; of P, let¢; denote the contact every pixel inI in the Euclidean distance to the closest black
point betweerp;, and Pr as specified by Lemma 2.3. We pixel. Formally, the Euclidean Distance Map is a function

have the following result. I — R such that for everys, j), (1 <1, <n), m(i,j) =
Lemma 2.5: The pointy, is not dominated by,—1 and  d((i, 5),v(3, 5)).
qx if 2 <k <4, and dominated otherwise. We now outline the basic idea of our algorithm for

Proof: If py, (2 < k < i), is dominated by,_; and  computing the Euclidean Distance Map of image We
qx, thenI;, must be empty. Thus, Lemma 2.4 guarantees thabegin by determining, for every pixel in royy (1 < j < n),
prs (2 <k <), is not dominated by;_; andg,. Suppose the nearest black pixel, if any, in the same columid.dflore
thatpy, (¢ +1 < k < n), is not dominated by,_; andg;.  precisely, with every pixe(i, j) we associate the value
Then, the boundary point betwegp andg; is to the right . CoN g .
of that between these two boundaries correspondg, i@ dij = mindd((¢,7), (7, 7)) [ biryr = 1,1 < j" < .
contradiction. Thereforey, (i +1 < k <n), is dominated If b;; ;; = 0 for everyl < j' < n, then letd; ; = +oc0. Next,
by pr_1 andqx, completing the proof. B we construct an instance of the proximate points problem for
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every row j, (1 < j < n), in the imagel involving the set time complexity of this step i®(n).

P; of points in the plane defined & = {p; ; = (i,d; ;) |

1 <i<n}. noindentStep 2.Again, we compute Euclidean Distance
Having solved, in parallel, all these instances of the prox-Map of input imagel along with row wise.

imate points problem, we determine, for every proximate

pointp; ; in P;, its corresponding proximity intervd}. With Step 2.1For everyi-th row (1 < 7 < n), each processor

j fixed, we determine, for every pixél, j) (that we perceive PE() computes the proximate points using the theorem of

as a point on ther-axis), the identity of the proximity proximate points problem as foundation, as illustrated in

interval to which it belongs. This allows each pixgl j) Figure 9 and Figure 10.

to determine the identity of the nearest pixel to it. The

same task is executed for all rows2, ...,n in parallel, to ®.1) ®8
determine, for every pixe{i, j) in row j, the nearest black PE; 1 0]0]010]83/0]0]4
pixel. The details are spelled out in the following algorithm: Lo U 0 O O A
vspace2mmnAlgorithm : Euclidean Distance Mag] PEe | 00124112 L5

e [afalalofolalals]

Step 1For each pixeli, j), compute the distances p,:—j 20303 1] 1]4al3]2
) ) PEs |2 l2]2l2l2]ls]4]

di,j = ’I’)’LZTL{U{? — Z| ‘ bk,g = ]_7 ]_ S k S n} PE: _____1____1________3____6____5____0:

to the nearest black pixel in the same column. PE (101)000“0;
vspace2mnstep 2let P; = {p;; = (i,d; ;) | 1 < i < ' '

n}. Compute the proximate points(P;) of P;. Figure9. Processing with row wise

Step 3For every pointp in E(P;) determine its proximity

interval of P;. In Figure 10, the Voronoi polygons correspond fth

Step 4 For everyi, (1 < i < n), determine the proximate row _(shaded r_ow) of th_e image i||UStI’§ted in Figure 9. The
interval of P; to which the point(i,0) (corresponding to Obtained proximate points are saved in a stack.

pixel (i, 5)) belongs. vspace2mm It should be clear that each column has its own corre-

e assume that there are processors PE(1), PE(2), ..., sponding stack. Therefore, in order to add a new proximate
PE(n) available. The parallel implementation of above algo40int to the stack, we need to calculate boundary points of
rithm is shown as follows: this new point and existed proximate points which are kept

in the stack. Then according to locus of boundary points,
Step 1.We assign the-th column ( < i < n) to processor We decide which points need to be deleted from the stack.
PE(7) to compute the distance to the nearest black pixel in
the same column. First, each PE(I < i < n) reads pixel Step 2.2For everyi-th row (1 < ¢ < n), each processor
values in thei-th column from up to bottom to compute that PE() determines proximate intervals of obtained proximate
distance, as illustrated in Figure 8(a) (its original input imagepoints by computing boundary point of each pair of adja-
is shown in Fig 7). Second, each processor PE(K i <n)  cent proximate points. The boundary point of each pair of

adjacent proximate points can be obtained by calculating

PE, PE, PE; PE,PE; PE, PE;, PE, PE, PE, PE, PE,PE; PE, PE, PE, the intersection point of two lines, one line isaxis and

offoyoifoi3yofoio; 04 04 04| 04 34 04 04 04 another is the normal line of the line which connects two
o od il i 2 1o ofodeilail 2 tioi s  adjacent proximate points. We refer reader to Figure 11 for
S I B B B B S il st 1g2i B4l the jllustration. Each pair of adjacent proximate points can
11 2431101 04f 3921 31 31 4 4103 0 3] 2} 3¢

2if s ai| i 1) 4 ]3] 4l 21 af st s 1y a{3t] 21

sifafsi|2f2ys]ails! 12y 2t 2i 2] 5] 4] 1}

ol 5416|3365l o; HEREHEHEY 3 ® L I L2

ov oy ov| o¥] a¥ 7 ¢ 6V 0¥ off o off off 4l 7{6if 0!} /\

2

(a) process with up to bottom (b) process with bottom to up 1 1
Figure 8. Process each column with two directions
1@
/ \X-'a\xis
reads pixel values in the same column from bottom to up to L AT N P ——

compute that distance, as illustrated in Figure 8(b). Finally, FRAGD  Phclsz) PRAIG) Pelod)  FRel®S) Fleleo) Phel@n) Pheled)
each processor selects a minimum value of calculated two
distances as final value of the distance. It is clear that the

Figure10. \oronoi polygons
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be obtained from the stack.

Step 2.3According to the locus of boundary points obtained

| Global Memory |

Multi
Core Core

Streaming
Multiprocessor

Core Core

Multip

Core Core

Shared Memory Shared Memory Shared Memory

Figure12. CUDA hardware architecture

from Step 2.2, each processor determines the closest blag@alesced access when they access to the global memory.
pixel to each pixel of the input image. The distance betweerr'9ure 12 illustrates the CUDA hardware arch|t(_acture.
a given pixel and its closest black pixel is also calculated in CUDA parallel programming model has a hierarchy of

the obvious way.

thread groups calledrid, block and thread A single grid
is organized by multiple blocks, each of which has equal

It should be clear that, the whole Step 2 can be implementegumber of threads. The blocks are allocated to streaming

in O(n) time usingn processors.

Theorem 3.1:For a given binary imagé with the size of
n x n, Euclidean Distance Map of imagecan be computed
in O(n) time usingn processors.

Suppose that we have processors (k < n If this is
the case, a straightforward simulation+ofprocessors by

processors such that all threads in a block are executed by the
same streaming processor in parallel. All threads can access
to the global memory. However, as we can see in Figure 12,
threads in a block can access to the shared memory of the
streaming processor to which the block is allocated. Since
blocks are arranged to multiple streaming processors, threads

processors can achieve opt|ma| slowdown. In other Wordéyn different blocks cannot share data in shared memories.

each of thek processors performs the task pfprocessors

CUDA C extends C language by allowing the programmer

in our Euclidean Distance Map algorithm. For example, into define C functions, callekernels. By invoking a kernel,
Step 1, thei-th processor (K i < k) computes the nearest all blocks in the grid are allocated in streaming processors,

black pixel within the same column for rows frofn— 12 .
T+ 1th toi- 3. This can be done i (n - ) = O(%-)
time. Thus, we have,

Corollary 3.2: For a given binary imagé with the size of
n x n, Euclidean Distance Map of imagecan be computed
in O(";) time using k processors.

IV. COMPUTEUNIFIED DEVICE ARCHITECTURE
(CUDA)

CUDA uses two types of memories in the NVIDIA
GPUs:the global memorandthe shared memorf23]. The

and threads in each block are executed by processor cores
in a single streaming processor. In the execution, threads
in a block are split into groups of thread calledarps
Each of these warps contains the same number of threads
and is execute independently. When a warp is selected for
execution, all threads execute the same instruction. Any
flow control instruction (e.g. if-statements in C language)
can significantly impact the effective instruction throughput
by causing threads of the same warp to diverge, that is, to
follow different execution paths. If this happens, the different
execution paths have to be serialized. When all the different

global memory is implemented as an off-chip DRAM of execution paths have completed, the threads back to the
the GPU, and has large capacity, say, 1.5-6 Gbytes, bigame execution path. For example, for an if-else statement,
its access latency is very long. The shared memory is aff some threads in a warp take the if-clause and others take
extremely fast on-chip memory with lower capacity, say,the else-clause, both clauses are executed in serial. On the
16-48 Kbytes. The efficient usage of the global memoryother hand, when all threads in a warp branch in the same
and the shared memory is a key for CUDA developers talirection, all threads in a warp take the if-clause, or all take
accelerate applications using GPUs. In particular, we neethe else-clause. Therefore, to improve the performance, it is
to considerthe coalescingf the global memory access and important to make branch behavior of all threads in a warp
the bank conflicof the shared memory access [28], [5]. To uniform.

maximize the bandwidth between the GPU and the DRAM As we have mentioned, the coalesced access to the global
chips, the consecutive addresses of the global memory mustemory is a key issue to accelerate the computation. As
be accessed in the same time. Thus, threads should perfoiiftustrated in Figure 13, when threads access to continuous
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Figure13. Coalesced and stride access

VH (Vertical-Horizontal) access mode HV (Horizontal-Vertical) access mode

Figure14. Access modes for Step 1
locations in a row of a 2-dimensional array (horizontal
access), the continuous locations in address space of the
global memory are accessed in the same ticmalesced HH (Horizontal-Horizontal) di j = min{|k — j| | bix =
access). However, if threads access to continuous locations | < . < n}
in a column vyertical access), the distant locations are , , ] ,
accessed in the same time (stride acgesom the structure HVY (Horizontal-Vertical) d;; = min{|k — j| | bix =
of the global memory, the coalesced access maximizey 1 <k < n}
the bandwidth of memory access. On the other hand, thglote that, for VH and HV access modes, the resulting values
stride access needs a lot of clock cycles. Thus, we shoulgkored in the two dimensional array is transposed.
avoid the stride access (or the vertical access) and perform |n the same way, we can define four possible access modes
the coalesced access (or the horizontal access) whenewgy, VH, HH and HV for Step 2. For example, in VV mode,

possible. the distances are read in column wise and the resulting
values of Euclidean Distance Map are written in column

V. OUR PREVIOUS IMPLEMENTATION OF EDM wise.
ALGORITHM ON GPUs The readers should have no difficulty to confirm that

possible combinations of access modes for Steps 1 and 2

In this section, we show our previous implementation
. i are VV-HH , HH-VV, VH-VH, and HV-HV, because the
of EDM algorithm on GPUs [5]. We have defined Severalaccess mode satisfies the following two conditions:

memory access modes which affect the performance of our
algorithm. Using the access modes, we have implemented @ondition 1 If the resulting values in Step 1 are stored in

parallel EDM algorithm. a transposed array, those in Step 2 also must be transposed.
Otherwise, the resulting Euclidean Distance Map is trans-
A. Access Modes posed.

The key part of our Euclidean Distance Map algorithm Condition 2 The writing directions of Step 1 and Step 2
is Step 1 and Step 2. We will define several access modg®ust be orthogonal.

which affect the performance of our algorithm. Recall thattparefore. in the notatiom; wyryw, of access modesy;

in_ Step 1, pixel values are read_ in column. wise_, and theyq ro must be distinct from Condition 1 and the number
distances to the nearest black pixel are written in columny ;7 i 71, wy, 7o, andw, must be even from Condition 2.

wise. Instead, we can write the distances to the ”eareﬁtherefore, the possible access modes are VV-HH, HH-VV,
black pixel in row wise. In other words, we can read theVH-VH, and HV-HV.

pixel values in column wise (i.8/ertical), or in row wise

(i.e. Horizonta)) and write the distances in column wise (i.e. B. Implementations with Different Access Modes

Vertical) or in row wise (i.e Horizontal). The readers should In our previous work [5], we have implemented our

refer to Figure 14 for illustrating the possible four accessproposed parallel EDM algorithm with the above four access

modes of Step 1. modes. Also, we have evaluated our proposed parallel EDM
Let d; ; denote the resulting distances of Step 1. For eaclalgorithm with Tesla C1060 [24] which consists of 240
access mode we can writg ; as follows: Streaming Processor Cores and 4GB global memory. The

experimental result shown in [5], the performance of VH-VH

! Ve I . o < .
WV (Vertical-Vertical) d; ; = min{lk — i | br; = 1,1 < access mode was better than the other access modes. This is

k< . : .

< n} because in VH-VH access mode, the GPU implementation
VH (Vertical-Horizontal) d;; = min{|k —i| | by; =  can benefit from coalesced access to the global memory
1,1 <k<n} significantly.
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For clear explanation, first we describe the details of thecomputing boundary points. Since one stack is used for
GPU implementation of the parallel Euclidean Distance Mapthe computation of each columm, stacks are necessary
algorithm. Here we just describe the GPU implementationin total. We allocate a 2-dimensional array in the global
of VH-VH access mode. For other access modes, theimemory to the stacks. Each stack is assigned to one column

implementations can be understood in the same way. of the 2-dimensional array. Also, each thread reads elements
of corresponding column of the extra array, which stores

Block 0 Block 1 Block n/k-1 the results of Step 1, to obtain elements of corresponding

bt ttot t ot i, stack. However the push-pop operations for the stacks are

not uniform. Therefore the access of the extra array cannot
be performed in full coalescing. In the same way, the access
of the stacks also cannot be performed in full coalescing.
This is reason that the implementation of Step 2 cannot
achieve a significant performance even in HH-VV access
mode. After computing boundary points, we compare the y-
coordinate of each boundary point with the y-coordinate of
each pixel to obtain the distance to the closest black pixel.
If we assume that the mapping results will be stored in a
2-dimensional array named output array, it needs all threads
accesses the output array along with row wise. In other
words, each thread accesses the corresponding row of the
output array, and it cannot utilize the coalescing. However,
For implementing Step 1 of the algorithm, we partition in Step 2 of VV-HH access mode, its whole implementation
the original input image of. x n into 7 subimagesalong  cannot benefit from the coalescing at all. This is the reason
with column wise, wheré: is the number of threads in one that Step 2 of HV-HV access mode can be little faster than
block. We assign;: blocks are assigned to subimages and Step 2 of VV-HH access mode.
each block processes each corresponding subimage indepen-
dently. Each thread of a block processes each corresponding/l. NEW IMPLEMENTATION OF EDM ALGORITHM ON
column of the subimage. We refer readers to Figure 15 as GPUs
an simple illustration. In Figure 15, ea¢h(0 <i <k —1)

Figure15. Mapping blocks into subimages

The main purpose of this section is to show our new
represents a thread of a block and each arrow represents ﬁ'ﬂplementation of EDM algorithm in the GPU. In the

access of a pixel value by one thread. It is clear that, forrollowings we introduce a new access mode and a new
a subimage, the access to each row can be performed |H1plemen£ation with it

coalescing.
By following Step 1 of the pqrallel EDM algorithm, each_A_ New Access Mode with Efficient Memory Access
thread needs to access each pixel value of the corresponding
column two times. One is access for computing results of AS We see in the previous section, VH-VH access mode
up-to-bottom process and the other is access for computing®n obtain the best performance of four access modes.
results of bottom-to-up process. After selecting the minimum herefore it is clear that coalesced access to global memory
value for each pixel, each thread writes the minimum ongPl@ys an important role in our GPU implementations. How-
into an extra array which stores the results of Step 1 alonﬁverv VH-VH access mode cannot fully benefit from coa-
with row wise. It is clear that, the both up-to-bottom process@sced access because its memory writing does not support
and bottom-to-up process can benefit from full coalescingtoalesced access. Therefore, in this subsection, we show a
However, the writing of the extra array cannot benefit fromN€W implementation of the proposed algorithm which can
the coalescing at all. On the other hand, in the implementafully utilize the coalescing in each implementing step in
tion of VV-HH access mode, the writing of the extra array ismMemory read and write. We call the access mode of the
also can benefit from the full coalescing. Therefore in Vv-Néw implementation a¥TV-VTV access mod¥TV stands
HH access mode, the implementation of Step 1 can achie®r Vertical-Transpose-Vertical To keep two conditions as
the most significant performance. Differently, in HH-VV shown in t'he previous section, following operations are
access mode, the whole implementation of Step 1 canndterformed in each step;
benefit from the coalescing at all since the read and write 1) An input data is read from global memory with
operation for the global memory is stride access. Therefore coalesced read.
Step 1 of the HH-VV access mode achieved the worst 2) The results are transposed with shared memory.
performance. 3) The transposed results are written into the global
In Step 2 of the algorithm, stacks are necessary for memory with coalesced write.
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More specifically, in the new access mode of Step 1, the 2- [wo[on]ea oAy
dimensional array of the input image is read in column wise 22422 2%
by each thread. After processing, the results are transposed

using shared memory. The transposed data is written into

(310) | 311 | (31.2) | ... |GBL31)

another array in column wise by each thread as the results 2dimansionalamay  hssignment o th shared memory
of Step 1 and the input data of Step 2. In the new imple- (@) Bank conflct assignment

mentation of Step 2, the 2-dimensional extra array which Dummy column

contains the results of Step 1 is read in column wise by | e

each thread. After reading data from the 2-dimensional extra [eo T fen T Tom

array, the resulting values of Step 2 are transposed using“ojeo o em ) =

shared memory. The transposed results are written into the [eolem[ea] - [ewwe

extra array column by column by each thread. Itis clear that, ey (o contict e posment s he st memony
in VTV-VTV access mode, each step can be implemented (o) Bank conflct ree assignment

with full coalescing.
Figure17. Bank conflict free map
B. GPU Implementation with New Access Mode

We now show the new implementation of Step 1 for
VTV-VTV access mode. The results, which are stored to However, in the above implementation, the use of shared
2-dimensional arrays, of up-to-bottom and bottom-to-up promemory causes another problem, shared memory bank con-
cess are obtained by the same manner of the implementatidlicts. As given above, the size of the shared memory array
for VH-VH access mode shown in Section V-B. After that, is 32 x 32. It means that one column of this array is mapped
each resulting 2-dimensional array is divided into subimagesto the same bank of shared memory, since there are 16 or
whose size is32 x 32. One block is assigned to each 32 banks in shared memory of CUDA GPU [23]. If multiple
subimage and each block runs independently. threads in a block access to the distinct banks in the shared

In each block, the minimum values from correspondingmemory, the access can be serviced simultaneously. On the
elements in the two 2-dimensional arrays are selected. Tether hand, if threads access to the same bank, the access
obtain the results of Step 1 in VTV-VTV access mode, thehas to be serialized. In our implementation, when threads
minimum ones are transposed. In our proposed implemenwrite the minimum values to the shared memory, they write
tation, to transpose them, we utilize the shared memonthe minimum ones to the same column of the 2-dimensional
As shown in Figure 16, the 32 resulting values of up-to-array in the shared memory (Figure 17(a)). Therefore, bank
bottom and bottom-to-up process each are read in columgonflict occurs. To avoid the bank conflict, we add a dummy
wise using coalesced access with 32 threads. The minimumolumn to the shared memory array (Figure 17(b)). Adding
ones are selected and written to the shared memory ithe dummy column, elements of each column are mapped
column wise. The above read and write operation is executefito different banks and all the access in the transposing is
column by column. After that, the values are written to free from the bank conflict.
the corresponding transposed position in the global memory In Step 2 of the implementation, the resulting values are
in column wise with coalesced access. Using the sharegtansposed with the shared memory in the same manner as
memory, all the access from/to the global memory can behe above.
coalesced.

VIl. PERFORMANCEEVALUATION

CH In this section, we show the performance evaluation of
the proposed GPU implementation through different experi-

NN R L ments. In all the experiments, we have used a binary image
ﬂ—' 1] of size9216 x 9216. Every measurement is the average value
Rrol i o Shared MZ!M — of 20 experiment_s. For all measure_ments obtained from GPU.
systems, the variance corresponding to each measurement is
I“ﬁ always less than 1. For example, the experimental system

is GTX 580 and the input image is the Lenna image (see
Figure 18), then the variance of the 20 experiments is only
Result of bottom-to-up process 0_64,

e o sednenay Feeadaaon shasmeney Table | shows the performance of the new implementation
on different GPU systems. For the binary image of Lenna
(see Figure 18), our new implementation using VTV-VTV
access mode can achieve 20, 46 and 54 times speedup on

Figure16. Coalesced Transpose with Shared Memory
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Table |
PERFORMANCE OF IMPLEMENTATION WITHVH-VH AND VTV-VTV
ACCESS MODE ON DIFFERENTGPUSYSTEMS(n=9216)

(a) Tesla C1060

CPU VH-VH access mode| VTV-VTV access mode|
Time[ms] | Time[ms] | Speed-up| Time[ms] Speed-up
Stepl 3956 147 26.9 39 101.4
Step2 7205 621 11.6 508 14.7
Total 11161 768 145 547 20.4
(b) GTX 480
CPU VH-VH access mode| VTV-VTV access mode|
Time[ms] | Time[ms] | Speed-up| Time[ms] Speed-up
Stepl 3956 90 43.9 20 197.8
Step2 7205 273 26.3 221 35.4
Total 11161 363 30.7 241 46.0
Figure18. Binary Image of Lenna (c) GTX 580
CPU VH-VH access mode| VTV-VTV access mode
Time[ms] | Time[ms] | Speed-up| Time[ms] Speed-up
Stepl 3956 93 42.5 16 247.2
. Step2 7205 238 30.2 190 39.1
Tesla C1060, GTX 480 and GTX 580 system respectively, Total 11161 331 33.7 206 54.1

over the performance of the sequential algorithm imple-
mented on a CPU system with Intel Core i7 processor [29].

The experimental results also show that, even if the total _ L .
computing time includes data transfer time between hosplackpixels are randomly distributed such that the density of

memory and global memory, our new implementation a|Soblack pixels is varied from.O% to 100%.. Figqre 19 shpws the
can achieve about 10, 30 and 34 times speedup on Tes%grformance of the GPU implementation with two dlffe.rent

C1060, GTX 480 and GTX 580 system, respectively. The2CC€SS modes on the GTX 580 system. From the figure,
table also show that, the implementation with the vTv-the GPU implementation with VTV-VTV access mode can

VTV access mode can achieve 1.6x speedup, compared wififh1€ve a higher performance than that with VH-VH access
the implementation with VHVH access mode, in GTX 580 mode for each density of black pixels. The reason is that
system. However it just achieve 1.4x speedup in Tesla C106B107€ global memory accesses can be coalesced in VTV-
system. Actually Tesla C1060 only support previous generY 1V access mode.
ation CUDA architecture. However GTX 580 can support
new generation CUDA architecturBermi architecture [30] a0
. Compared with the previous generation CUDA architec-
ture, the Fermi architecture introduces several architectural
innovations. For example, in the Fermi architecture, at most
512 CUDA cores can be supported, the global memory
is featured by L1/L2 caches, the dual warp scheduler is
supported, etc. On the other hand, compared with the previ-
ous generation CUDA architecture, the number of memory

VTV-VTV access mode’  +
VH-VH access mode

Execution Time [ms]

transactions required by a fully coalesced memory access
is also reduced in the Fermi architecture. In the previous o
generation CUDA architecture, a global memory request for S N R

a warp is split into two memory requests, one for each half-

warp, that are issued independently. It means that, for a Warlgjgurelg. Performance of the GPU implementation with different access

it needs at least two memory transactions to access the glob3P9s

memory, even the global memory accesses are coalesced.

However, in the Fermi architecture, a global memory request Figure 19 also shows how the performance of the GPU

for a warp is issued into one memory transaction, if theimplementation is affected by the density of black pixels in

global memory accesses are coalesced. This is reason fige input image. However, the computing time of Step 1

why the coalesed access of global memory can achieves independent from contents of the input images. The

more speedups in GTX 580. computing time of Step 2 depends only on the contents.
It should be clear that the execution time depends ormherefore, we focus on the behavior in Step 2. If the density

contents of the input images. Therefore, we evaluated thef black pixels is small, pixels of input image have the

performance for the input images that have the differentommon nearest black pixel. In other words, each of the

density of black pixels. We generated input images whos®lack pixels dominates relative large area of the input image.
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EPu mplmentaion” + access mode. Therefore, we only show the performance
of the CPU implementation with HV-HV access mode.
In the figure, it is clear that the density of black pixels
has no significant effect on the performance of the CPU
implementation. Figure 21 shows the speedup factor of
the GPU implementation with VTV-VTV access mode,
compared with the CPU implementation. From the figure,
for the input images with different percentage of randomly
distributed black pixels, our proposed GPU implementation
can achieve at least 40 times speedup compared with the
o 10 0 % w0 s e 1 s w0 1o optimal CPU implementation.
e R On the other hand, experiments show that, the uniform
Figure20. Performance of CPU implementation with HV-HV access modedistribution of black pixels (see Figure 22) will result in
the worst performance. Since the uniform distribution of
o black pixels will bring a more complicated global memory
o ] access on GPUs. Therefore, in this paper, we just show the
performance of the uniform distribution.

N
12 b b b b b b
C e

Execution Time [s]

0

Speedup Factor

. . . . . . . . .
0 10 20 30 40 50 60 70 80 %0 100
Percentage of black pixels

Figure21. Speedup factor of GPU implementation compared with CPU
implementation

Figure22. Uniform distribution with 10% black pixels

Therefore, the behavior of the threads in each warp is almost
the same and computing time becomes shorter. According
to the figure, when the percentage of black pixels is close
to about 40%, the proposed GPU implementation achieves |n this paper, we have proposed a simple parallel algo-
the worst performance. When the density is the above, manyithm for the Euclidean distance map and shown an intuitive
of pixels of input image do not have the common nearesGPU implementation of the proposed algorithm. In the GPU
black pixel. Therefore, the behavior of the threads in eaclimplementation, we have considered many programming
warp differs and it causes worse performance. On the othagsues of the GPU system such as coalesced access of
hand, when the percentage of black pixels is larger thaglobal memory and shared memory bank conflicts. We have
40%, the execution time of the GPU implementation isimplemented our parallel algorithm in the following three
decreasing along the increase of the percentage of blagkodern GPU systems: Tesla C1060, GTX 480 and GTX
pixels. The behavior of the threads in each warp is almost thgg0, respectively. The experimental results have shown that,
same, which is similar to the lower density of black pixels.for an input binary image with size di216 x 9216, our
Therefore, better performance is achieved. Especially, if thémplementation can achieve a speedup factor of 54 over the
density is close to the 100%, that is almost all the pixelssequential algorithm implementation. On the other hand, we
are black, access of stacks assigned to threads in a warphgwve also presented that the density of black pixels in an

almost identical. Namely, all the access to the global memoryhput image affects the performance of the proposed GPU
over the whole process reaps the benefit of coalesced accefaplementation.

Figure 20 shows the performance of the CPU implemen-
tation of the sequential algorithm on images with different
percentage of randomly distributed black pixels. In our
previous paper [5], we have shown that the CPU imple- [1] NvIDIA Corp., “CUDA ZONE/
mentation can achieve the best performance in HV-HV http://developer.nvidia.com/category/zone/cuda-zone.
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e (label) :: (guard) — (statement)

(label) (ZZ DO EMED A RTZFK L, (guard)
FEMEZ FEITT 2 7 vk X HH ORESCHHE
Tut ZOREIZEHT omHEATREIND.
(guard) 73 true 4, (statement) |ZF0IR
NOEMEEZFAT LIRBBOEFEZ1TH. £, &
Tatv AOBEEEIZ OV TIM B IREE L
/AN

B HEER BT DIRDL Cy 12BN T (guard)
Mtrue Lieb Tt ADZ L EEIEARER T
2R LIS, T AOBEORR, AT
LORMMAEALT D L EBBE LIS $T
DEBOEGELE O &L, RIWC 7D Cj ~
DEBPFIET D25, (C,Cj) € DX ST
e
23 DBURTLETOEST

I AT A ETOFET EARRBLOA TR
REERS Cq,Co,... TREND. 221, fEED
i = 1K LT (C\Cip1) € 6 TRITNIERD
R R G MHIXLED, C TRDPDED
RFAT iy Oy WFTET B L&, HRILC; D5
C; ~EIEFREL Y, (C;,C5) DX HITHET.
24 R7Ta—3

AT a—7LlE, HOHRRIZBIT RN
C, TEMERRE/R 7 1 & 2 Dt S EME & ET
SEL TR ERAZERTLbOTHLS. Trt
ZDBEROME S 2 AV 2= 7 LY, &
EHEC KD LT Xy ey Esns.

o A (unfair): 7 vt ADEROIEIFIT
— B DAE & B AR

o F3/AF (weakly fair): =T OHkFEAIZ B
fEA[RECd 5 7 mE ATV TSN D

o TR/ (strongly fair): X TOHERIZ L
X UIEEMEFREZ 7 1 & A XV TR &
no

o [AIH (synchronous): #IZ < TOEER]
REZR 7 ANEIRS 11D

F72, FRHCEMERRER 7 m 2 20HIZ L -
TUTOL I IIHHEND.
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o i FIFICENMETE 27 vk 2DEIL
B & —D.
C-7—Er L bIFINS.

o i RIRFIZHEE D 7 1 & AR EER]HE.
D-7F—E v b D.

F, DMV AT LS LAY a—T o NG
bl E, LV IHTRTOERITOESRS
e(S,0) THET.
25 BCOXE - BRE

HOZE &L, DB AT L ETOWDRD
—RFREIC bt D AHETH D, AOLEY
AT I TIEBEDNE U T DR & IR &
A2 LT, ZORW B EYS R A~EIRT S
ZEERRAET D, £, RS ARRIAER
T2 & O U722 W BR 0 12 70k B
TFHTZ Eide.

ETE 21 (BBREVATL) Dy AT A
WCBWTHKD ZS>DOMWE N SN5854,
FONE AT AFIHOCLEETHDE V).

o ILHME: e(S,0) FOMLEDIITIZWT
Ce D—DIZEETD.

o P Cp PTOEEDRUNBIZLE D
EEDOFEIT E € e(S,0) 1T ITHEE
7=

/LEE L1, ACRENMEET D _>oME
DI BHEEZFHDI-LOTH L. HELET
XEARFITTHUTINRT 5 2 & BMRAES
NDHDIZHK L, J9LETIXE DRI S S IR
T ORI BRETVHFAET 22 EBRIEESNT
W5,

T 22 (BREREVATL) DY AT AT
BOWTKRD Z>0WEN™ SN2 5E, ©
DB AT DIPFLEETHDH E V.

o SHVIRHME: Cz TOERORBUK LT,
Co \ZHET DL ORFAT E D r< &b
—OMFHET D.

o MG Cr FOEBEORRNHIZLED
EEDOFAT B I AR 279



3 ERII7

TNIVALAETT TG, AV a—T 0
MmhEzbND &, 0O DRMOES C LER
BfR O BR—RICRED. ZOTDAF Y a—T
o blTH777GETTANITY RAAERE
TT20B AT LRI 7 7L LTERT
X5, ZOAMT I 7EACKET VY XA
RPERET NIV X LOVEE 2D 12Dl
ML, KX TIEBs 7 7L LTERT D.

FT& 31 BBIII) ArVa—TFkolk
T5757 G ETTATY XA AZBETTSH
I AT B LT, ZOREEES CB XV
BB SICLVEZHMIT T S = (C,6) &
A DEBRTZ 7 LIS

SLETINTY X LDE T T 7L T O
KO MHERDS.

e HORETNITY RADER ST 7 LITR
BV, BRI TOELTRWIROES
WA FET .

o IEYTARVRILOE G I I O RS Sy
WA b, RAlinfgiEsiesd. AL
ET VT Y X AOEEIERERE Ky & ED
ZENTER0.

ZOWEDZ L BER T T T O ERE L E
£95. 77, BEBEIZRBWTEYSZ2RIIZ
TOBERE 2 TAE, EWEEE B Eed 5.

Mg 31 (BREFZNLIIVALDEHRT ST
DEEHEE)

BZET VA ) XLDOER ST 7 O EES L
WO ZOOMWEZFD.

o HHMRBIZERT HTEEDIRNNG, £
J& XV EALOEIZ R T 2RI~ DRI ITAF
ELRN,

o HHWRBIZET DEEORIMND, ZORE
J& LD LD R T DRI~ DR DAF
£ 5.

70

ZOMERE AL, BEET LT
VX LB T T 7 OmERER S ETERET 5
HW 57 S BEHT 5.

EH 32 HEZT7SIE, BRI T T OWE
AER oy ETAERES L L, ik oES %
NEEGETIHHEMT T 7THD.

PRSI N R ORI T L T Y X ARR SR &
THTTT7TEIR LD, EDD, WERET
VY REOF T RFHEFIEE LTI oEB S
77 OB E OWE A RET 5.

4 FIIIYXL

TNAAY XL 5.
41 +t=Y mETILTY XL

EAMEDH HHIMY 7 LD A 7
Va—T7OFT, h—7 KnlEE < RE
PHEFHRET N TY ALERNTDH. ZOmLT
WH b7 VKEIEEIZLLTOERTH .

ETE 41 b—7 KmEFEEIE, UTo >
DEMEHI-T L oIcxry NU—27 ETh—7
VEKEISELHMETHS.

o Xy hU—7 EIZIE, BbroE—o2oDhr—
7 VINEET D

o Xy hU—2 EOT_RTHOT kAL,
FRIZLIZLIE h—2 2R D

ZOMEEMLS BHRET VI Y XLN[1] T
BEIN TNV,

Algorithm 1 Code for every process 7

Variable: v; € {0,...,my — 1}

Macro:
PassToken;

mn

= ;= (vi—1 + 1) mod

Predicate:
Token;

Action:

A

[vi # ((vi—1 + 1) mod my)]

Token; —  PassToken;

KETav A1 ITEH v, D, Token; M3
true E R AEE T X i 1T N—7 v B RE



LTW3A. PassToken; l37utXin7otk
Ai+1IC b= 2T~ THD. NIT
Xy NU—7 FOF a2 THY, my 1IN
ZE D I W/ NI LT 5.

EHEA41 1 74T X081 EEAMODH D
MY o7 ENOMAFERAT Y 2—FDFT
~— 7 LRI % fif < PREMESI L E T LT Y
ALTHD.

WEA1 Ry NT—2 LD N—27 BT
L7 20T 1ULETHS.

my X N ZF 0GB ThH 00, T
XTOTrE AR v; = ((vi—1 + 1) mod my)
BT EITTERY. Thbh, bl k
H 1 o077 atw 2% Token; =9, Lo
T, M 4.1 30 2o,

WEA42 Xy NU—7 LD =2 OB
A% Z EIFR.

=27 vaFRFLTWRN T ot X 0
=27 U EREET DL, TrkERXi—10
PassToken; 1 #E4T L2 T id7e 5720,
Fuat A i — 12 PassToken;,_1 & FE{T%
B2, uv A4 — 113 Token;_1 &=
LTWhldniEe o2y, et i— 170
PassToken;_1 #FE{T7T5HE, 7nkxi-1
X Token;—1 iz &< 725, Lo7C, #id
4.2 73R Y ST,

IOTATY RAOBEBY T 7S LS I
ToOM1L,K2DE5127%5. K1 DOMONE
IO AT LORAETRLTND.

42 )—HEZETILITYXL

EAPED B DA EINOBATAr P 2—F D
T, UV—FEEREE R REMETZET v
Y RLERNT D, ZOMLTHD U —F ik
ZELIIUTOERTH S.

F42 V—FEEWELIL UTFTO_ZoD
KA Lo Rry NU—2 ETRE—D
DY —XERHETAMETHD.
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e Xy hNU—Z EOU—XLLTEHEINE
Taw AL, BEREHEINTWDLZ L E
Wik cx 5.

e Xy =2 LDV —=HPIHNOFTRTOS
ot AL, oo ARBHEENTND
AR TES.

ZOMEEMELS {RET VLT AN [1] T
/EINTWAS.

Algorithm 2 Code for every process p

Variable: v, € L, U{L}
Macro:
Child, = {qe€L,:v,=p}
Predicate:
Leader, = (v,=1)
Actions:
Ay (vp # L) A (|Childy,| = 6y)
— vp =1
Ag (vp # L) A [Lp \ (Child, U{vp})

# 0] = vy == (vp + 1) mod §,
As (vp = L) A (|Child,| < dp)
— vp :=min(L, \ Child))

Sy X7 PR p DBET R ADETHS.
vp FTRER p RY —FIZEH LT mE R
DA VT I ATHD. v, =qDEE, 7
oA plEraktRqr)—XET5H. Fi,
vp=L1loLE, TukwxplIHEE Y —4F
ETD. Ly lZ7at R p OBET v 2~
Da—HNA LT v I ADELETHDL. T72
bH, L,={0,1,...6,—1} Ths. vz u
Child, 1 Z7 vt % p ODRETTERADH b,
TR pEk) LT LHTuRA0EAE
A

BfE A 1L, BT o 22 ) —F L LT
27w pn, V—FEHIIERT LEME
Thd. BEA I, BT X2 ) -4 L
LTWa7rtRxpn, V—FEoMEEa
TRACEETLIMETHD. BE A3 1X, BH
ZY—=FLLTWb7atAp, V—F&kk
BETobv RACEETHEMETHD. Ay & Az
ZBWT, UV—FEA T v 7 ADEIZHNT
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RESND.

FEA42 [ 7TV XL 2 FRAFARATY
2 —F D FTY —Z @A i < RIEMETI L
ETNTY ZALTHD.

W@ 43 ToutRp PEMETRETHD L,
L, Z&FEns7ntxnsb, bl —
DIEIFEATETH 5.

Tt A pn A AfEMVMETHLEE, 7
BER v, 1A FE A AEAARETH .
Tat A p Ay HEMARETHL L E, T
To7atx qge Ly, \ (Child, U{v,}) 1% As
FF A EHAETHD. TR pn
A ZfERAETHDL L X, TRTOTrEXR
q € L, \ Child, 1% Ay F721% Az % fli i T hE
Thon. UbENb, #8435,

43 )—FEZETII)XL (BE)

T Y R0 2 OBE Az 1, v, BIRET D
DIZ Child, BT 5. Lo L, BIfE Ay X
Child, #ZRET, A T v 7 AEO K %= S
BLTWa., 72bb, BfEA; I Z7rtR)p
BV LTHMETev A% ) —F AL
RVDIZH LT, BfE A IR p &Y —
LT o7 e A%k ) —XITEHTDHZ L
WHdH., LinLens, I]o7ra ) XA 2
DIEYMEDOFERIC L 5 &, ZoEEILT LD
MERBEETIIRV. 22T, ZOHCIXEE
Ay IZOWTh Child, #2325 X 9ICER
L7 na ) ANEEANT D,

FH 43 7o IY XA S ITHRAFEAY Y o2 —
T D F TV — @M% iR < EMETEET
NTYXALTHD.

TOEBITAITY XA 2 LA U T
TZ5.

WEA4 v, £ L THLHTaL A p BBHER
AThnbeE, TutRv, DEIFICLY 7 H
TR p NEMEFREICE DD Z Eld7e\.



Algorithm 3 Code for every process p
Variable: v, € L, U{L}

Macro:
Child, = {qe€L,:v,=p}
Predicate:
Leader, = (v,=1)
Actions:
Ay (vp # L) A (|Childy,| = 6p)
— vp =1
Ay (vp # L)ALy \ (Childy U{vy}) #

vp = (vp + ) mod 6,
— (x:min{x € {1,2,...,0, — 1} :
(vp + ) € (Lp \ Childy)})
As i (vp = 1) A(|Childy,| < 6p)
— vp 1= min(L, \ Child))

THAY XL 3OWVTHOEES, v, 77
A pe Childg #fRAT 52 L3R, Lo
T, Ml 4.4 DY SEo.

ZOTNA) REDT T T NAE—TIDA
LA HOBEOBEB ST TS &S HUTF
DX 3,4,5,6 DX 52D, X 3,5 DFHDONHEE
T AT LORMAZRLTWD, £, 7
BERAp D q ~SODHMAPFIET D EE, vy
=q &L, p &AL THHEIMLNEE LR
i, v, =1 &7 5.

5 &7ILITYXLOEEEER

51 F=2 KE7ILIT) XL

MiE 41 & 42 KXY, x>y hU—7 ED h—
7 DI Ko TIEY TRVIRIOES % N-1
EOBEEIZT D ENTES.

52 —HEFE.X5—

A2 S — ETOY —ZIEEDOROBGEZ 72
Tut ZADOMBU LV BEER ST 6N, 22
L, ZAZ—0HhLoFat 2% ¢, THLSND
TuktREbET5H.

o Uy = U A Ve F Up

FoT, ELTRWVIRIOES Z N-1 HOFR
BT ENTED.

i

M3 AZ—LETOY—FBREOERES T 7 (N=4)

M4 AZ—ETOY—FBED S(N=4)



{5 T4 ETOY—FEEOEE ST T (N=4)

K6 FAEkTn)—F@EED S(N=4)
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53 U—HEFE-S4>

FTA Ly ETOY —FBREDIROBRGE AT
Tat AOMEBIZ L VEER ST OGS, 22
L, 94 v kLTt p DO 7Tet 2%
pl, ABEDO T ot 2% pr &L E£LT 5.

o TAVDOMMDT B ADLGE
Up =PI AUpr ZFDPV U, =plAvy #D
o T A OIS T v ADGE
Vp = Pr A Uy # p A (pl 23 Z DIRGEZ il
T2F) Vo, =pl Avy #p A (pr 2D
WEEZ 72 d)

M 4.3 L0, B4 TRVRIOES%E N-1
TEOMEEIZT D ENTED.

54 E®E
SEFHEZIT- =7 T Y X LT RTITON
TEYTRWIRIOES % N-1 [HOREEIZ 5y
FTHZENTET.

6 FLOHESERDEE

AlEl, BEETNITY XAOFMFEE LT
BRI T PR OMEEREE LI, LinLs
[l D FIAE TIFRA ARG D 2N E D K 5 72k &
2o TND, EOREENRHLET VT Y XA
DRRIZED K D It Ba 52 570, 128125
WTIEARAL TV RV, 207, ZoAICEL
TIEESORLMENLELRD.

Tz, BEFEOPHRET NIV ALDES S Z
TRROMEOREEIT o, AENX N—2
WET7 T XALE ) —FEET NI A L%
W =M DFTIZET AT ZLIZHONT Sl
BT o0ERZHL.

S5 Xk
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Abstract—In this paper, we present a new exact algorithm for
counting perfect matchings, which relies on neither inclusion-
exclusion principle nor tree-decompositions. For any bipartite
graph of 2n nodes andAn edges such thatA > 3, our algo-
rithm runs with O*(2(1~1/0(Ale 2)n) time and exponential
space. Compared to the previous algorithms, it achieves a better
time bound in the sense that the performance degradation
to the increase of A is quite slower. The main idea of our
algorithm is a new reduction to the problem of computing
the cut-weight distribution of the input graph. The primary
ingredient of this reduction is MacWilliams Identity derived
from elementary coding theory. The whole of our algorithm is
designed by combining that reduction with a non-trivial fast
algorithm computing the cut-weight distribution. To the best
of our knowledge, the approach posed in this paper is new and
may be of independent interest.

Keywords-counting perfect matchings, exponential algorithm,
coding theory, MacWilliams identity

I. INTRODUCTION

Counting perfect matchings in given input gra@lis rec-

usage of tree decompositions [4,5]. By combining the fact
that sparse graphs have a treewidth less ttian €)n for
some constant (e.g., if A < 3, e = 5/6 holds [6]), we

can obtain an algorithm runnin@*(2(!=9") time. All of
these algorithms brea*(2™)-time barrier in some sense.
However, during last 50 years, there has been proposed no
algorithm achieving exponential-time speedupdoygraph,
which is a big open problem in this topic.

Our result presented in this paper can be put on the same
line. The main contribution is to propose a new algorithm
for counting perfect matchings. For any bipartite graph of
2n nodes and\n edges, it runs witlD* (2(1—1/O(Alog A))n)
time and exponential space. While this algorithm does not
settle the open problem stated above, its speed-up factor
becomes substantially closer to the exponential compared to
the previous algorithms.

An important remark is that the approach we adopt is quite
different from any previous solutions. It relies on neither
inclusion-exclusion nor tree decomposition. Actually, the

ognized as one of hard combinatorial problems. In particulafMain idea is an extremely-simple reduction to the problem

the case thafs is bipartite has attracted much attention with

of computing the cut-weight distribution of the input graph.

its long history because of the relation to the computationl N Precise CO'T‘SUUC“O” of our algorithm can be summa-
of permanent, which is a characteristic value of matricedized as follows:

with many important applications. Since counting perfect
matchings for bipartite graphs belongs to #P-complete, there

seems to be no algorithm which runs within polynomial
time for any input. Thus all of the previous studies lies on
one (or more) of the following directions: Approximation,
restriction of input graphs, or exact exponential algorithms
In this paper, we focus on the third line.

A seminal exponential-time algorithm for counting perfect
matchings is Ryser’s one based on the inclusion-exclusio
principle [1]. For any bipartite grapldr of 2n vertices, it
counts perfect matchings with* (2") time* and polynomial

memory space. There has been several improvements follow-

ing that work: Bax and Franklin have shown an algorithm
running with O* (2(1-1/0(n**Imn)n) expected time and
exponential space [2]. Servedio and Wan have given a
algorithm with a time upper bound depending on the averag
degreeA [3]. It achievesO*(2(1=1/0(exp(A))n) time and

polynomial space. Another approach to this problem is the

10* means the Big-O notation with omittingoly(n) factors.
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o For anyodd input bipartite graphG of 2n nodes and

m edges, we can show that the number@$ perfect
matchings is equal to the number of elements with
weight m — n in its cycle space. In addition, for any
bipartite graphG, it is possible to construct the odd
bipartite graph& which has the same number of perfect
matchings ag-, by adding a constant number of nodes.
By utilizing the primal-dual relation between cycle
space and cut space, we can reduce the problem of
counting cycle-space elements with weight— n to
computing the weight distribution of the cut space.
The technical tool behind this reduction is the use
of MacWilliams identity, which is a well-known theo-
rem derived from elementary coding-theory. That iden-
tity provides the linear transformation (by so-called
Krawtchouk matrices) that maps the weight-distribution
vector of any cut space to the corresponding cycle
space.

Since the cardinality of the cut space is vertex-
exponential, it is easy to construct a naive algorithm

n

n
e



with O*(22") running time. We improve its running Theorem 1 (MacWilliams Identity [9]) Let C be a
time by utilizing the bipartiteness property and a novel(m, r)-linear code overF, and C* be its dual. Then, the
technique analogous to separator decompositions.  following identity holds:
It should be noted that except for the last step, our 1 1 _ 2
approach is applicable to any graphs which may not be bi- Fo(z) = 2ﬁ(1 + )" Fos <1+x> .
partite. Our reduction technique can be seen as an algebraic
approach to the design of exact algorithms as considered By comparing the coefficient of each monomial in both
in [7, 8], where several kinds of algebraic transformationssides, we have the representationVd: (k] by a linear sum
are used for appropriate handling of target universes. T6f the weight distribution ofC"+:

the best of our knowledge, this is the first attempt using 1
the transformation by MacWilliams Identity (or equivalently Weli] = > Z K (j,1)Weljl, (1)
Kratwtchouk matrices) for that objective. j=0

The organization of the paper is as follows: We ﬁrStwhereKm(j,z’) is the value known as Krawtchouk polyno-
presents several notions and definitions in Section II, whichyiq1s  defined as follows:

includes an tiny tutorial of linear codes. Section Il intro- .
duces our reduction to cut space. The algorithm to compute Ko(j, i) = Z(*l)k (z> (m — z>
the cut-weight distribution is shown in Section IV gives ’ k)\j—k
an algorithm computing the cut space. We mention the
related work in Secption V, and finall;f)conclude the paper in”l' COUNTING PERFECTMATCHINGS VIA CYCLE SPACE
Section VI with the open problems posed by our result. A. Cut and Cycle Spaces

In this section any arithmetic operation for elements of
vectors and matrices is over fielth. Letting G = (V, E)

k=0

II. PRELIMINARIES FROM CODING THEORY

A linear cerC over Fy defined byn x m matrix M is be an undirected graph withverticesvy, v, - - - , v, andm
the set ofm-dimensional vectors as follows: edgeser, ea, - , em, its incidence matrixAS = (Ag:j) c
C = [vMlv € F2}. F3*™ is the one such thatl¥, = 1 if and only if v; is

. . ) incident toe; and Afj = 0 otherwise. It is easy to check
The matrix M is called thegenerator matrixof C. By the ot thej-th row of AY is the 0-1 vector representation of

definition, codeC is the linear subspace &% spanned. the set of edges incident ta. Given a 0-1 (row) vector
by the row vectors ofM. The rank of that subspace IS representation obs for a vertex subses C V, vgAS is
denoted byrank(M). Clearly, the number of codewords in the cytset betweets and V' \ S. It implies that the linear

C' (denoted by|C) is equal to2™"* (™). A (m,7)-inear  o4e defined by the generator matd¥ is equivalent to the
code is the one such that the length of codewords iand ¢4y of edge subsets each of which represents a cutset, so-
its rank isr. _ called thecut spaceof G.

Let C' be a linear code with generator matri. The As an well-known fact, the set of all cycles @ induces
parity check matrleTof Cis them x (m —rank(M)) 3 jinear subspace oFf’, where each element is a 0-1
matrix satisfying [/w" = 0 for any codewordw € C.  \ecior representation of the edge set constituting one or
It is well-known that there is a duality between generatorqre cycle(s). This subspace is called tyele spacef G.
matrices and Pa”tY (_:heck_matnq_es: For tjhe cadte with Note that the cycle space can be recognized as the set of all
generator matniH, itis easily verified thav” M = 0 holds  gn4n0ning even subgraphs (i.e., subgraphs where every vertex
for ayv € C=. That 'S M is the parity check matrix  pag an even degree). The matrix whose row is the basis of
of . Theg tEe codeC" is called thedual coge Ofg' G's cycle space is denoted <. Similarly to the cut space,
Obviously v" v = 0 holds for anyv € C'andv™ € O~ \yg regard the cycle space as a linear code defined by the

It implies that the dual code is the orthogonal complemenyyenerator matrixBS. An important relationship between cut

of the primary code. space and cycle space, stated below, is known:
Given a codewordv, the number of appearance of value

1in w is called theweightof w. Theweight distributionof

a (m,r)-linear codeC' is the m-dimensional vector whose
k-th entry W¢[k] is the number of codewords with weight
k in C. The weight distribution is often represented as the This fact implies that the linear code associated with a
form of generating functiond'c:(z) = > Welw]z®. cycle space is the dual code of that with the corresponding
This function is called theveight-distribution polynomiabf  cut space, and vice versa. In the following argument, given
C. There is a well-known theorem providing a relationshipan undirected grapty, C(G) andC~+(G) denote the linear
between the weight-distribution polynomials of primary andcodes defined by the generator matriés and A“ respec-
dual codes: tively. We often use term “cutset @&” as the meaning of

Fact 1 The cycle space dF is the orthogonal complement
of the cut space of5.
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the codeword ofC'(G) associated with that cutset. The samewe only consider the case thét is a bipartite graph in
usage is also applied for cycle spaces. this paper, general graph can be handled similarly. Let
. G = (V1 UV,, E), be an arbitrary bipartite graph such that
B. From Cycle Space to Number of Perfect Matchings Vi| = [Va| = n, andV = V3 UV for short. The set of

Given an undirected grapty = (V, E), we consider even-degree vertices i is denoted by (i € {1,2}).
counting the number of perfect matchings(@f Since there  \we can easily show the following lemma:
is no perfect matching if the number of vertices is odd, we
define2n = |V|. Let m = |E| for short. The degree of Lemma 2 The values ofveven| and |Vsver| have the same
vertexv is denoted byi(v). First we focus on the case that parity.
G is anodd graph, i.e., a graph such thdfv) is odd for ] )
anyv in V. The number of perfect matchings of odd graph ~ Proof: Assume thatE| is odd. Since}_, yeven d(v)
G is related toG’s cycle space by the following lemma. IS even for anyi € {1,2}, 3,y yeven d(v) must be odd.

Thus, |V \ V*¥*"| is odd for anyi € {1,2} because any

Lemma 1 For any odd graphG, the number of perfect node inV'\ V¥ has an odd degree. It implies thage"|

matchings inG is equal toW¢ gy [m — n]. is odd for any{1,2}. The case of evefF| can be proved
similarly. ]
Proof: Let V' = {vo,v1,--,v2n—1} be the set of  The construction ofG is given as follows:

vertices inG. We prove the lemma by defining a bijection
between the set of codewords with weight-n and perfect
matchings. More precisely, we prove that the complement

« Add two verticesy; 1, andy; o to V; for eachi € {1, 2}.
« For eachi € {1,2}, connect each node V" with
{)3—1',11 andf)g_m with 131'72.

(in terms of the edge set afr) of any codewordw in o If d(91,1) andd(v5,1) are even, connect them. Recall
C(G) with weight m — n is a 1-factor (equivalent to a that d(#;.;) and d(i,) have the same parity from
perfect matching). Let7,, be a spanning even subgraph Lemma 2 ’

corresponding taw. The degree of; € V in G, is denoted
by d'(v;). To prove that the complement &f,, is a 1-factor,
it suffices to show that!’(v;) = d(v;) — 1 holds for any

v; € V. Suppose for contrgdicti?n that(vi) # d(vi) =1 | emma 3 The graph(: is an odd bipartite graph, and has
holds for somev; € V. Since d’(v;) < d(vi), d(vi) IS the same number of perfect matchings(as
odd, andd'(v;) is even (recallG, is a spanning even

subgraph ofG), we haved'(v;) < d(v;) — 1. To make Proof: Any node inG clearly has an odd degree. Let
S, d(v;) = 2(m — n) hold, there must exist another M C E be any perfect matching @f. Sincev, » ando, 3 is
vertexv; satisfyingd’(v;) > d(v;) — 1 = d(v;) = d’(v;).  degree one, edged 1,022} and {1,712} are necessar-

An example of the construction is shown in Figure 1. For
the constructed grap@, we have the following lemma.

It contradicts the fact thai(v;) is odd. m ilyincluded in M. ThenM \ {{%1 1,722}, {021,712} } iS @
Combiningthe lemma above and Theorem 1, we obtainperfect matching o&;. Conversely, given a perfect matching
the following corollary: M' CEof G, GU {{t1,1,02,2}, {21,701 2}} is a perfect

matching ofG. Thus, we have a one-to-one correspondence
Corollary 1 Let G be an arbitrary odd graph. There exists between the perfect matchings 6f and those ofG. The
an algorithm to count the number of perfect matching&in lemma is proved. ]
with O(m7(5m)) time provided that the weight distribution
Weo () is available, wheren is the number of edges i@

and 7(z) be the time required for arithmetic operations of /S Seen in the previous section, the computation of the
two z-bit integers. cut weight distribution for graplt; induces the number of

perfect matchings ofs. Thus, in what follows, we focus on
Note that the absolute value of Krawtchouk polynomialsalgorithms for computing the cut weight distribution.
has a trivial upper boundk,,(j,7)| < poly(m) (T:/‘Q)2 < The set of edges constituting a cut is associated with a
22m+0(logm) and the number of all codewords 6f- (G) is ~ Partition of all vertices: A partitior(s, V'\ 5) of all vertices

at most2” < 2™. Thus, the time required for each arithmetic V' induces a cutset, which is the set of edges crossing
operation in the right term of formula 1 is bounded by PetweenS and V'\ S. Thus we often use the sentence

IV. COMPUTING WEIGHT DISTRIBUTION

7(5m). “partition (S,V \ S) of V" as the meaning of the cut
) o associated with that partition. We defiag, T') to be the set
C. Transformation to Odd Bipartite Graph of edges crossing two disjoint subsétaand (5,7 C V).

While the result in the previous subsection assumes thdh particular, if S (resp.T) is a singleton{v}, we use
G is an odd graph, that assumption can be easily removedhotationc(v, T) (resp.c(S,v)).
The fundamental idea is to construct the odd grépkhat While two different partitions can lead the same cutset
has the same number of perfect matchingsGasWhile  (e.g.,(S,V'\S) and(V'\ S, 5)), it is well-known that exactly
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~ V11 V1,2
Figurel. The construction off

2¢ subsets induce the same cutset, wheiis the number
of connected components 6f and equal tar — rank(A%).

Thus, instead of computind/c . (), we rather consider the
cut-weight distributioni’/,, ., over all partitions, that is,
Werolkl = {S € Vlle(S,V\ S)| = k}|. It is easy to

calculateWe . () from W’CL(G) because of the relation of
WCL(G) =27 Wél(G)

A. O*(2™)-time Algorithm

A straightforward way of computingV’CL(G) is to enu-
merate all partitions ofi” with computing their weights,
which trivially takesO*(22") time. In the case of bipartite

Algorithm 1 shift: Function for computingVxy»-1

1: function shift(W,L) /« W e N"™ and ,L € N* x/
while L is not emptydo
| + the head ofL
Remove the head dof
W+ W+ UI(W)
endwhile
return W

NoOgaAR®DN

of all partitions of V' conditioned by (S’, V' \ §’), and
W v be the cut-weight distribution over all partitions in
Pgr v Our algorithm relies on the fact thaVg,, can

be computed within polynomial time im provided that

a partition (S, V4 \ S) of V; is given. In the following
argument, we introduce an arbitrary orderiguy, - - - v, 1

of vertices inV,. We defineVi = {v;, v;11, - vp_1} U V1.

The lemma behind the correctness of our algorithm is stated
below:

Lemma 4 For a given partition (S,V; \ S), let | =
|C(’Ui,V1 \ S)| — ‘C(’Ui,S)‘. Then Ws‘vi+1 = Ws‘vi +
O—Z(WS|V1) holds.

Proof: From the definition of Wgy:, Wgyirn =
Wsugw,yvi + Wy clearly holds. Thus it suffices to show
Wsuguiyvi = oil(Wspyvi). Let (S, V '\ S) be a partition
in Pgvi, and k be its weight. By adding; to S’, the
weight increases by. That is, the weight of partition
(S"U{v;},V\ (8" U{v;}) is k + [. It implies a one-to-
one correspondence between the partitionsPy: with
weightk and those irfPg,,}v: With weightk + 1. Hence
we haveWgyy,yjvilk +1] = Wgvi[k] for any k. It clearly

graphs, we can reduce the time required for computing®!oWs Wsuu,yjvi = 01(Wgv+). The lemma is proveds
the cut-weight distribution. As a first step, this subsection The recursive formula in Lemma 4 trivially allows us

proposes arD*(2™)-time algorithm, which has the same

to compute Wgy, = Wgyn-1 within polynomial time

performance as Ryser’s one [1] (in terms of the base ofh n. For the _usefulne_ss of the following f’:\r_gument, we
the exponential part). Further improvement of the running®ncapsulate this recursion process by funcgaift shown

time is considered in the following subsection.

Let G = (V1 U Vi, E) be the input bipartite graph such
that |Vi| = |V2| = n and |E| = m, andV = V; UV, for
short. For weight-distribution vectdd and integer value
x € [-m,m], we defines,(1W) as the vector obtained by
shifting each element dfl” = times. That is,

0 if i <x,
oce(W)i] =< Wli—z] ifn—-1>i>u,
0 if i>n+ux.

Note that the case of < x or i > n + z applies
only when z is positive or negative respectively. L&t
be a subset oft”. We say that partition(S,V \ S) is
conditionedby a subset partitio{S’, V' \ S’) if S O 5’
and (V' \ S) 2 (V'\ §) holds. LetPg/ . be the set
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in the pseudocode of Algorithm 1. Ldt : 21 — ZIV1l pe
the function such thak (X)[i] = |c(vi, Vi \ X)| — |e(vs, X))
holds for anyv; € V5. Our O*(2™)-time algorithm computes
and sums up the values @hift(Wx o, L(X)) over all
partitions of V;. That is, our algorithm computes the right
side of the following equality:

Weiy = D shift(Wejvo, L(S)). )
scv;

The correctness of this formula is obvious from the definition
of WS\Vl-

Theorem 2 There is an algorithm computin@/’(’ﬂ(c) with
O*(2™) time.



B. Functionshift as a Linear Transformation

Before introducing the faster algorithm, we show several

properties of Functiorshift. Let H = {h, ;} € R™*™ be
the matrix defined ag; ; = 1 if j =i+ 1 and0 otherwise.
It is easy to check this matrix works as the operaigr
i.e., for any m-dimensional vectodV, WH* = o,(W)
holds. Hence we can describe functishift(1V, L) for a
given sequencé = (lg, 11, l,—1) as follows:

)

where I be them x m identity matrix. We can obtain the
following lemma:

n—1

[[HE+1

i=0

shift(W, L) = W ( 3)

Lemma 5 Letting L and L’ be two sequences of integers,
and Wy, W, € N, Then the following properties hold:
1) o, (shift(W, L)) = shift(o,(W), L),
2) shift(shift(W, L), L") = shift(W, L o L"),
3) O'I(Wl + Wg) = JI(Wl) + O—I(WQ), and Shift(Wl +
Wa, L) = shift(Wy, L) + shift(Ws, L),
whereo is the concatenation of two sequences.

Proof: Since o, (W) shift(W, (z)), we can treat
o, equivalently toshift. Clearly, Equation 3 implies that
shift(x, L) is a commutative linear transformation. Thus all
properties obviously hold.

C. Improving Running Time

In this subsection, we consider an improvement of

O*(2™)-time algorithm. The running time of the improved
algorithm is O*(2('~5515)") and consumes exponential
space, where\ is the average degree of the input graph.

The underlying principle of the improved algorithm

is very simple: Separating two smaller subproblems. Let

(Ty,U;) be a partition oft; (i.e., 7y = V4 \Uy) fixed by the
algorithm, N (U;) C V4 be the set of vertices adjacent®,
andwg, vy, - - - v,—1 be an arbitrary ordering df> such that

Lemma 6

Ly(X,Y) = Ly(X,0)+ Ly(0,Y) — Ly (0,0).

Proof: We prove Ly (X,Y)[i] Ly (X,0)[:] +
Ly (0,Y)[i]—L(,0)[i] for anyi. SinceX C Ty andY C U;
are mutually disjoint, the sets of edgg®;, X) andc(v;, Y)
are mutually disjoint. Thus we havg(v;, X UY)| =
le(vi, X)| + |e(vs, Y)|. Similarly, we havele(v;, Vi \ (X U
YN = levi, (Ty \ X) U (UL \ Y))] = [e(vs, (T2 \ X)) +
|e(vs, (U1 \Y))]. Then we can obtain the following equality:
Ly (X, Y)[i]
= le(vi, N\ X UY)[ = [e(vi, (X UY))|
= [evi, (To \ X))| = |e(vi, X))
+ le(wi, (U \Y)| = [e(vi, Y)
= le(vi, Vi \ X))| = le(vi, Th)| — [e(vi, X))
+ le(vi, Vi \Y))| = |e(vi, Un)] = [e(vi, Y|

= Ly(X,0)[i] + Ly (0, Y)[i] = |e(vi, Ty)[ = le(vi, Ur)]
= Ly (X, 0)[i] + Ly (0, Y)[i] — |e(vi, Ty U UL
= Ly (X, 0)[i] + Ly (0,Y)[i] = Lo (0, 0)]4].

The lemma is proved. ]

The improved algorithm runs as follows:

o (Step 1) We divide all partitions of; into several
classesCy,(Cq,---C, such that for any two partitions
(X1,71 \ X1) and (X3, 71 \ X2) in the same class,
LU(Xl,Q) = L(XQ, @) holds.

(Step 2) For eachi € [1,z], we compute weight
distribution W; = 3~ x 7\ xyec, Wxjvn-n-1.

(Note thatWv; = Z(X,T]\X)ECj Shift(Wx|V0,LT(X))
holds.)

(Step 3) LetL(z) be the value ofLy (X, () associated
with classC; and cy = |¢(Y, V2)| for short. For each
i € [0,z] and each partitionY,U; \ Y) of Uy, we
computeLy (¢,Y) = L(i) + Ly (0,Y) — Ly (0,0) and
shift(o.,. (W), Ly (i,Y)). The sum of all the values
returned by functioshift is the output of the algorithm.

the last N (U, )| vertices correspond & (U; ). The cardinal- We can show the following lemma, which directly leads
ity of N(U,) is denoted by for short. Now we consider the the correctness of the algorithm:

situation wherg/; andT; are partitioned intq X, U; \ X)

and (Y, 71 \ Y). If we regardsX andY as variables, the Lemma 7

first n — h entries(lp, {1, - ln—p) Of L(X UY') become a x

function of X', which are independent of the value bf Wiy = Z Z shift(oe, (W;), Ly (i,Y)).

In contrast, the last entries({,,—p,lp—pt1,---ln—1) are a i=1 YCU,
function of bothX andY. Consequently, by two appropriate
functions Ly : 2171l — 77=h and Ly : 27 x 2V — 71,
the sequencéd,(X UY') can be described as follows:

Proof: Since Wx v is the distribution over singleton
{(X,V°\ X)}, we haveWx yo[i] =1 for i = |¢(X, VO \
X)| and0 otherwise. Thus, we have., (W yo)[i] = 1 for
i=|e(X,VO\ X)|+ cy and0 otherwise. Sincéc(X,V0\
X)|+cy =[e(XUY,V\ (X UY))| holds, we obtain

L(X,Y) = Lp(X) o Ly(X,Y).

Then the following lemma holds:

(4)

ooy)(Wxvo) = Wxuyvo.
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By using this equation, Lemma 5 and 7, we can obtain V. RELATED WORK

the following equality: As seen in the introduction, we have roughly three lines

- . . about the studies on counting perfect matchings. We intro-

;y;] shift(oe, (Wa), Lu (i, Y)) duce the related work along them respectively.

e There has been proposed two different approach for
= Z Shift<00y( Z wan—h—l>,LU(i7Y)) approximating the number of perfect matchings. The first

%}S&Sf'v (X, T\ X)€C; one is the Markov-chain Monte Carlo method, which
= gives a fully-polynomial randomized approximation scheme
> > shift (oo, (Wyjyn-n-1), Lu(X,Y)) (FPRAS) for counting perfect matchings [10-12]. The sec-

%/SCZET (X, Ti\X)eC; ond one is a randomized averaging of the determinant [13—
_ ) ) 15]. The fastest approximation algorithm on this approach
- Z shift (oc, (shift(Wx|vo, L1 (X)), Ly (X, Y)) is one by Chien et.al. [15], which runs with(1.2™) time.
S It is still an open problem whether there exists a FPRAS
- ) ) following this approach or not.
_X;T shift <Sh'ft(UCY(WX|V°)’LT(X))’LU(X’Y)> The second line is the algorithm design for restricted

Y inputs. A seminal work on this line is a polynomial-time

_ . exact counting algorithm for planar graphs [16]. As other
B Z shift (oc, (Wijvo), Lr(X) o Ly (X, 1) restrictions, graphs of bounded genus [17, 18] or bounded

ff(éa treewidth [4, 5], and chordal graphs with its subclass [19]

_ Z shift(Wxuy o, L(X UY)) are con3|dereq. .
Xt About the line of exact algorithms, we have already
Y CUy mentioned the results for bipartite graphs in the intro-
= W(’;L(G). duction. Thus we introduce only the work on counting
The lemma is proved. - perfect matchings for general graphs. A first result breaking

the trivial O*(2™)-time bound is one by Byklund and
Husfeldt [20], which has shown two algorithms: The first
one runs withO*(22") time and polynomial space, and
the second rounds witth*(1.7332") time and exponential
space. These algorithms are similar with our result in the
sense that it also reduces the problem into a counting over
a different universe. A number of the following studies
improve this bound [21-25]. The most recent and fastest
one is the algorithm by Bjrklund [25], which achieves the
same running time as Ryser’s algorithm (that is, currently
we do not find the difference of inherent difficulty between
bipartite and general graphs). About time complexity, Dell
et.al. [26] has shown that any algorithm has an instanee of

We focus on the running time of the algorithm. Clearly
the first and second steps of the algorithm takg2" V1)
time respectively. The third step requires timef(22/V1).
Thus the total running time i©* (271Ul 4 z2IU1l),

How small can we bound? Clearly, it is upper bounded
by the size of the domain ok (X). From the definition,
the value of Ly(X)[i — (n — h)] can taked(v;) + 1
different values for anyv; € N(U;). It follows = <
[1o,en(n)(d(vi) + 1). By applying the arithmetic mean-
geometric mean inequality, we can further boundby
(e (@) +1)/IN(U)) VUL, Letting Ay be
the average degree ovéfr C V in GG, we have

z < (Anqny + HINVEDL (5)  edges incurring(exp(m/ logm)) time if we believe that a
We consider how to choosE,. Letting A be the average counting version of the Exponential Time Hypothesis [27]
is true.

degree of G, V4 contains a subsefX of n/5 vertices
whose degrees are at ma@sgk /4. We chooser/(5Alog A)

vertices fromX asU,. For that choice we haveV(U;)| < VI. CONCLUDING REMARKS

n/(4log A). Since|N (U1)|Anw,) < An holds, we obtain In this paper, we presented a new algorithm for the prob-
Anw,) < 4AlogA. By assigning this bound to Inequal- lem of counting perfect matchings, which has an improved
ity 5, we obtain time bound depending on the average degfeeof the

+ < (4Alog A + 1)ﬁ < (4A2)ﬁ _ 0(2%) input graph. Compared to previous' results, our algorithm
runs faster for many cases. In particular, the performance
Consequentlyit follows that the running time of our algo- degradation to the increase & is quite slower than the
rithm is O* (20~ sat055)"). previous algorithms. The main idea of our algorithm is a
new reduction to computing the cut-weight distribution of
Theorem 3 There is an an algorithm for counting per- the input graph. Our algorithm is designed by combining
fect matchings of bipartite graphs which runs with this reduction with a novel algorithm for the computation
O* (21"~ s51z5)") time and exponential space. of cut-weight distribution. The approach itself is quite new,
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andmay be of independent interest. Finally, we conclude the [6] F. V. Fomin and K. Hgie, “Pathwidth of cubic graphs and
paper with several open problems related to our approach.

(1]

(2]

(3]

(4]

(5]

Can we achieve the running time exponentially faster

exact algorithms,”Information Processing Letters/ol. 97,
pp. 191-196, March 2006.

than Ryser’s one by designing a faster algorithm com- [7] A. Bjsrkiund, T. Husfeldt, P. Kaski, and M. Koivisto, “Fourier

puting cut-weight distribution?

The reduction part of our result is directly applicable
to any graph (which may not be bipartite). Can we use
the reduction to obtain a faster algorithm for general
graphs? Actually, lettind (G) be the independent sets
of the input graph&, we can easily obtain an algorithm
with O* (227~ (&1 running time by regarding: as a

"quasi” bipartite graph of two vertex sef$G) andV'\ (9]

I(G) and applying outO*(2™)-time algorithm, which

gives the same performance as the algorithm by [23].
Is it possible to design a faster FPRAS for counting
perfect matchings based on our method? Note that an

(1 + €)-approximation of the cut-weight distribution [11]

trivially induces an(1+¢)-approximation of the number
of perfect matchings because of the linearity of the
transformation.

Computing cut-weight distribution is a special case of
the counting version of 2-CSP, which is addressed by
Williams [28]. In this sense, our reduction gives a new
linkage from counting perfect matchings to CSP. Can
we use this linkage for obtaining some new complexity
result around those problems?

Can we apply the same technigue to other combinato-
rial problems? Interestingly, there has been proposed a
variety of MacWilliams-style Identities in the field of

the coding theory. We may find a useful transformation[14]

from those resources. In addition, it may be an interest-
ing approach to focus on the primal-dual relationship

of two universes. Can we design a kind of primal-dual [15]

algorithms for counting problems?
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6 end for
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Algorithm 2 TKNNwithCache()
input : k,Q
output: k-BCT

1 Candidate Set C;
Upperbound U B,;
Lowerbounds LB][], k-LB]];
Integer A < k;

while true do

for each q; € Q from q; to ¢, do

N O Ot s W N

find the closest cache point cpy, € C'P by
traversing the RTree of CP,{ 00000
00000o0o0o0oooooooo }
compute r;{ 00 rO0000O0O }
9 if Dist.(q;,cpr) <r{00000D0ODO
000 } then
A-NN(g;) « cached\-NN(cpg);{ OO
goboobooboboboooboooo
}
C; <+ trajectories scanned by -
NN(g; );
else
A-NN(g;) «+KNN(g;,A);{ 00000
0oooooooooog IKNN OO
0}
C; < trajectories scanned by M-
NN(g; );
end if
end for
C+CiUCU...UCpy;
if |C| > k then

compute LB][| for all trajectories in C;

10

11

12
13

14

15
16
17
18
19
20
21
22
23
24
25

compute UB,,;

k-LBJ[] + LBJ].topK();

if k-LBJ[].min > UB,, then
k-BCT¢refine(C);
return k-BCT;

end if

26 end if

27 A= A+ A;

28 end while

93

51 OO0 IKNNOOOODOOOO

00000000 IKNNOODODOOOoOoooo
gobooooooooobooobooooooog
goooocooo

e k=1500000m0O 200 10000000
ooooocoooood

em=800000 k0O 1002000000
ooopooooooog

gobooboobbooboobobooobon
goboooo 1mooooooooon
511 OOOOOOOODOOODOODOOO

ooo0ob0Ob l100o0o00oooooooooo
U0mbOO0O0O000CODOODOOOODOODODOO
gooodooooooooooooobooboboboboo
goodooooooooooboobbbobobboo
mOO0O0000C0 IKNNOOOOOQOOGOoooo
goboooobuooboooboboooo

6000
= BEFOD IKNN

s000 + RETE
4000

3000

E1TEER (ms)

2000
1000

0

2 3 4 5 6 7 8 9 10

512 kOOOODOOOOODOOO
ooo0oo0o0o20000000000000A0
gbooooocoooooboboooocooboooo
000o00oOoooooookOoOooooooooo
OO0 IKNNOOOOOoOooooooooooo
O000opoooook=T000 k=1200000
IKNNOOOOOOOoooooooooooooo
0000000000000 k=700 k=1200



O000000k=12000000000000000

0000000000000 100000000
O000kODoOOOoO0OoOoOOO0ODO cCcOooooo
O000OO0refine000000000DO00OOOO
cooboooooooooobocobobooooooon
oooon

O00k>13000000000000000
coobooooooooooboboobooooooon
coobobooooooooobooobooOoooon
oooooooooo copoooooooooo
oooooooooog

12
000 = BEFD IKNN

10000 ~REFE

8000

6000

EITRR (SUF)

4000
2000

0
k D&

02

52 000000000000

oo0ooooobOoooobooooDbDogoon
cooboocoooooooobocOobobooOoooon
ooobooooooooooboboobooooooon
cobobobooooooooboboobobooOooooon
cooboooooboooooobooboooooooon
coobooooooooooocoooooooon
oooo

e 0000DDOON 50000 350000000
000000000000000000000
— k=1,m=2000
— k=15,m=8 000
— k=25m=10000

e k=15m=10000000000000000
0000000D0000000 000 1000

94

gogbooobooboooodg

O000O0o00o0o00o0o00oo0oooooo 2500
gooooooon
521 ODOODOOOOOOOOOOOOODOO

ooo0oo 30o00o000o00oDooooon
O0OmO kOOOOOO0ODOOO0ODOOOODOOO
gobooooocooooobobooooooooo
goboooooooooobooobooooooog
goboooooooooboocooboOoooooa
O0oooO0O00o000o00boOoD ks, mOOOOO
goboooooooobooooboooooooa
ooooooooOoOoOoO0OO0 kO mOOOOOO
gobooooooooboooobooooood
gobooooooooboocoobooooooa
goboooooooooboooboooooog

14000
12000

10000
#k=15m=8
8000 * k=1,m=2
k=25m=10
6000

4000.______._______\\\\\\‘—‘——”‘/’//’/_,,,—_,‘
2000
A‘—Q—/‘."

0
500 1000 1500 2000 2500 3000 3500
FryLatAR

AT (SUF)

o3

522 DODOO0OO0OO0OOOOOCOOOOCODOODOO
ooooooon
oooooo04000000000000000
gobooooooooobooobooooooog
gooooooooooobobooooooood
oboooooooooboocoobooooooa
goooooooobooboooooboooboobod
0000000 IKNNOOOOoOooooooo
goboooooooooooog
IKNNOOOOOoOOooooooooooooo
AU00 A0ODODOOODOUOUOOOOOOOO



goboooobooobbooooboooobn
gbooooooboobobobooooooog
gobooboobbooboobobooboon
gboooboboobobooboboobooobbgoon
gboooooobooboboboboooogoog
00000000 IKNNOOOOOOooooono
gbooooooboobobobooooooog
gobooboobboobooobobooboon
gboooooooooogo

goboobbooboobobobobooboo
gobooboobobooboobobooboon
O0ooooooouoAODOOoOoDOoOOoOOoOO
gobooboobobooboooobooboon
gooooood

40000
35000
30000
25000
20000
15000

E1THFME (ms)

10000
5000

0 1 2 3 4 5 6 7 8 9
Fryiabvh

10

04

6 DO00OO0obooo

000000000000 00O0O0O0 ANND
0000000ooooooo00IKNNOOO
O00oO00oooO0Ooo ANNDODOOOODOoOoOo
OIKNNOODOOOOoooooooooooo
oooooo0oO000kO0mODDOODOOOOO
oooboooooooooobooooboooooon
coobobooooooooboocOobobooOoooon
coobooooooooooboboobooooooon
cooooooooooo

oobooooooboooboboooboooooon

95

gogbogooboobboobooboboooboo
goboboboboooooobooboboboobooo
gobogooboobboobooboooboo
gboboboboooooobobobobooboo
gooooooobooooooobobboboboboo
gbobooobooobboobboooboboo
goog
gobooboobboobooboooboo
O0oooOoooONNOOOoOOooOoDOoOooooo
0000000 LSH(Locality Sensitive Hashing)
goboooboobboobooboboooboo

ggooo

[1] http://research.microsoft.com/en-
us/projects/geolife/.

Zaiben Chen, Heng Tao Shen, Xiaofang Zhou,
Yu Zheng, and Xing Xie. Searching trajecto-

2]

ries by locations - an efficiency study. SIG-
MOD, 2010.

H.Samet G.R.Hjaltason. Distance browsing in
spatial databases. TODS, 1999.

A Guttman. R-trees: a dynamic index struc-
ture for spatial searching. SIGMOD, pages
47-57, 1984.

F.Vincent N.Roussopoulos, S.Kelley. R-trees:
a dynamic index structure for spatial search-
ing. SIGMOD, pages 71-79, 1995.



Memory Machine Models for GPUs

Koji Nakano
Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
Email: nakano@cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to introduce
two parallel memory machines, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM). Unlike
well studied theoretical parallel computational models such as
PRAMs, these parallel memory machines are practical and
capture the essential feature of GPU memory accesses. As a
first step of the development of algorithmic techniques on the
DMM and the UMM, we first evaluate the computing time for
the contiguous access and the stride access to the memory on
these models. We then go on to present parallel algorithms to
transpose a 2-dimensional array on these models and evaluate
their performance. We also how that, for any permutation given
in off-line, data in an array can be moved efficiently along
the given permutation both on the DMM and on the UMM.
Finally, we show that the sum and the prefix-sums algorithms
on the DMM and on the UMM. Since the computing time
of our algorithms on the DMM and the UMM is equal to the
sum of the lower bounds obtained from the memory bandwidth
limitation and the latency limitation, they are optimal from the
theoretical point of view. We believe that the DMM and the
UMM can be good theoretical platforms to develop algorithmic
techniques for GPUs.

Keywords-memory banks, parallel computing models, paral-
lel algorithms, stride memory access, matrix transpose, array
permutation, prefix-sums, GPU, CUDA

I. INTRODUCTION

A. Background

The research of parallel algorithms has a long history of
more than 40 years. Sequential algorithms have been devel-
oped mostly on the Random Access Machine (RAM) [1]. In
contrast, since there are a variety of connection methods and
patterns between processors and memories, many parallel
computing models have been presented and many parallel
algorithmic techniques have been shown on them. The most
well-studied parallel computing model is the Parallel Ran-
dom Access Machine (PRAM) [2], [3], [4], which consists
of processors and a shared memory. Each processor on the
PRAM can access any address of the shared memory in a
time unit. The PRAM is a good parallel computing model in
the sense that parallelism of each problem can be revealed
by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that
can be accessed by all processors in the same time, it is
imaginary and impractical.
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The GPU (Graphical Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [5], [6], [7], [8]. Latest GPUs are
designed for general purpose computing and can perform
computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention
of many application developers [5], [9]. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [10], the computing engine for
NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are
more efficient than multicore processors [11], since they
have hundreds of processor cores and very high memory
bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [10]. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-64 Kbytes. The global memory is
implemented as an off-chip DRAM, and has large capacity,
say, 1.5-6 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global memory
is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank
conflict of the shared memory access and the coalescing
of the global memory access [6], [11], [12]. The address
space of the shared memory is mapped into several physical
memory banks. If two or more threads access to the same
memory banks in the same time, the access requests are
processed sequentially. Hence, to maximize the memory
access performance, threads of CUDA should access to
distinct memory banks to avoid the bank conflicts of the
memory accesses. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed in the same time. Thus,
CUDA threads should perform coalesced access when they
access to the global memory.

There are several previously published works that aim
to present theoretical practical parallel computing mod-
els capturing the essence of parallel computers. Many re-
searchers have been devoted to developing efficient parallel
algorithms to find algorithmic techniques on such parallel
computing models. For example, processors connected by



interconnection networks such as hypercubes, meshes, trees,
among others [13], bulk synchronous models [14], LogP
models [15], reconfigurable models [16], among others. As
far as we know, no sophisticated and simple parallel com-
puting model for GPUs has been presented. Since GPUs are
attractive parallel computing devices for many developers,
it is challenging work to introduce a theoretical parallel
computing model for GPUs.

B. Our Contribution: Introduction to the Discrete Memory
Machine and the Unified Memory Machine

The first contribution of this paper is to introduce simple
parallel memory machine models that capture the essential
features of the bank conflict of the shared memory access
and the coalescing of the global memory access. More
specifically, we present two models, the Discrete Memory
Machine (DMM) and the Unified Memory Machine (UMM),
which reflect the essential features of the shared memory
and the global memory of NVIDIA GPUs.

The outline of the architectures off the DMM and the
UMM are illustrated in Figure 1. In both architectures, a sea
of threads (Ts) are connected to the memory banks (MBs)
through the memory management unit (MMU). Each thread
is a Random Access Machine (RAM) [1], which can execute
fundamental operations in a time unit. We do not discuss the
architecture of the sea of threads in this paper, but we can
imagine that it consists of a set of multi-core processors
which can execute many threads in parallel. Threads are
executed in SIMD [17] fashion, and the processors run
on the same program and work on the different data. In
principle, each thread is assigned a local memory (or local
registers) that can access O(1) words of data. However,
sometimes, we assume that each thread has more than O(1)
local registers, if many registers are very useful to accelerate
the computation. If this is the case, we assume that each
thread has r local registers to store words of data. In either
cases, we assume that each thread can access to a local
register in 1 time unit.

MBs constitute a single address space of the memory. A
single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (i mod w)-th bank, where w is the number
of MBs. The main difference of the two architectures is the
connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM, the
address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the
MBs can be accessed in each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM.
Since the memory access of the UMM is more restricted than
that of the DMM, the UMM is less powerful than the DMM.
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Figure 1. The architectures of the DMM and the UMM

The performance of algorithms on the PRAM is usually
evaluated using two parameters: the size n of the input and
the number p of processors. For example, it is well known
that the sum of n numbers can be computed in O(3 +logp)
time on the PRAM [2]. We will use four parameters, the size
n of the input, the number p of threads, the width w and the
latency [ of the memory when we evaluate the performance
of algorithms on the DMM and on the UMM. The width
w is the number of memory banks and the latency [ is the
number of time units to complete the memory access. Hence,
the performance of algorithms on the DMM and the UMM
is evaluated as a function of n (the size of a problem), p
(the number of threads), w (the width of a memory), and [
(the latency of a memory). Further, » (the number of local
registers used by each thread) may be additionally used.

In NVIDIA GPUs, the width w of the shared memory and
the global memory is 16 or 32. Also, the latency [ of the
global memory is several hundreds clock cycles. In CUDA,
a grid can have at most 65535 blocks with at most 1024
threads each [10]. Thus, the number p of threads can be 65
million.

C. Position and Role of Memory Machine Models, the DMM
and the UMM

The DMM and the UMM are theoretical models of
parallel computation, that capture the essential feature of
the shared memory and the global memory of GPUs. The
architecture of the GPUs are more complicated. It is a
hybrid of the DMM and the UMM. Also, when we develop
efficient programs running on the GPUs, we need to consider
several issues. NVIDIA GPUs have other features such
as hierarchical architecture grid/block/thread. All threads
are partitioned into equal sized blocks. Synchronization of
all threads in each block can be done by calling barrier
synchronization function _synct hreads(), which has
fairly low overhead. On the other hand, no direct way is



provided for synchronization of all threads in all blocks.
There are several indirect ways of synchronization of all
threads, but they have rather high overhead. It follows
that, local barrier synchronization is acceptable while global
barrier synchronization should be avoid. This fact is not
incorporated in the DMM and the UMM. It may be possible
to incorporate many features of GPUs and introduce a more
exact parallel computing model for GPUs. If all features of
GPUs are incorporated in our theoretical parallel models,
they will be too complicated and need more parameters.
The development of algorithms on such complicated models
may have too much non-essential and tedious optimizations.
Thus, we focus on just memory access features on the
current GPUs, and introduce parallel computing models, the
DMM and the UMM. Actually, efficient memory access
is a key issue to develop high performance programs on
the GPUs [12], [18]. Thus, we have introduced two simple
parallel models, the DMM and the UMM, which focus on
the memory access to the shared memory and the global
memory of NVIDIA GPUs. Sometimes, direct implemen-
tation of efficient algorithms on the DMM and the UMM
may not be efficient on an actual GPU. However, we believe
that algorithmic techniques on the DMM and the UMM are
useful for developing algorithms on GPUs.

In [19], a GPU memory model has been shown and
a cache-efficient FFT has been presented. However, their
model focuses on the cache mechanism and ignores the
coalescing and the bank conflict. Also, in [20], acceleration
techniques for GPU have been discussed. Although they are
taking care of the limited bandwidth of the global memory,
the details of the memory architecture are not considered. As
far as we know, this paper is the first work that introduces
simple theoretical parallel computing models for GPUs.
We believe that the development of algorithms on these
models are useful to investigate algorithmic techniques for
the GPUs.

Further, the parallel architecture of our memory machines
make senses not only for GPUs, but also for a class of
all parallel machines that support a uniform shared address
space designed using a set of off-chip memory chips or
on-chip memory blocks. Usually, DRAMs [21] are used to
constitute an off-chip memory. An on-chip memory block
can be implemented in a rectangular block of a VVLSI chip.
For example, modern FPGAs has a lot of block RAMs,
each of which can store 18kbit data [22], can be used as a
memory bank. To increase the capacity and the bandwidth,
we should use multiple on-chip memory chips or on-chip
memory blocks. To connect a set of processor cores with
these memory elements though the MMU, the architecture
of the UMM and the DMM make a whole lot of sense.
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D. Our Contribution: Fundamental Data Movement Algo-
rithms on the DMM and the UMM

The second contribution of this paper is to evaluate the
performance of two memory access methods, the contiguous
access and the stride access on the DMM and the UMM.
The reader should refer to Figure 2 for illustrating these two
access methods by four threads 7'(0),T'(1),7'(2), and T'(3).
It is well-known that the contiguous access is much more
efficient than the stride access on the GPUs [12]. We will
show that, the contiguous access is also more efficient on the
DMM and on the UMM. More specifically, we first show
that the contiguous access of an array of size n can be done
in O(%—k%’) time units on the DMM and the UMM. We also
show two lower bounds, () time units by the bandwidth
limitation and Q(24) time units by the latency limitation to
access all of data in an array of size n. Thus, the contiguous
access on the DMM and the UMM is optimal. Further, we
will show that the stride access on the DMM can be done
in O(% - GCD(,w) + ";’) time units on the DMM, where
GCD(%,w) is the greatest common divisor of 2 and w.
Hence, the stride access on the DMM is optimal h‘p% and w
are co-prime. The stride access on the UMM can be done in
O(min(n, 2 - 7 + %’)) time units. Hence, the stride access
on the UMM needs an overhead of a factor of Z.

From these memory access results, we have one important
observation as follows. The factor - in the computing time
comes from the bandwidth limitation of the memory. It takes
at least 7> time units to access whole data in an array of size
n from the memory bandwidth w. Also, the factor %’ comes
from the latency limitation. From the memory access latency
I, each thread cannot send a new access request in [ time
units. It follows that, each thread can access to the memory
once in [ time units and any consecutive [ time units can
have at most p access requests by p threads. Hence, %’ time
units are necessary to access all of the elements in an array
of size n. Further, to hide the latency overhead factor %l
from the bandwidth limitation factor -, the number p of
the threads must be no less than wl. We can confirm this
fact from a different aspect. We can think that the memory
access requests are stored in a pipeline buffer of size [ for
each memory bank. Since we have w memory banks, we
have wl pipeline registers to store memory access requests
at all. Since at most one memory request per thread are
stored in the wl pipeline registers, wl < p must be satisfied
to fill the pipeline registers full of memory access requests.

E. Our Contribution: Transpose and Permutation on the
DMM and the UMM

The third contribution is to show optimal off-line permu-
tation algorithms on the DMM and the UMM.

As a preliminary step, we show transposing algorithms
for a 2-dimensional array of size \/n x v/n. In [18], several
techniques are presented for transposing a 2-dimensional
array stored in the shared memory and the global memory
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The contiguous access and the stride access for p = 4 and

on GPUs. We have adapted these techniques on the DMM
and the UMM. The resulting transposing algorithms run in
O(% + ) time units and in O((% + 2),/%) time units
on the DMM and the UMM, respectively.

We next show a permutation algorithm on the DMM. We
use a graph theoretic result of bipartite graph edge-coloring
to schedule data routing. The resulting algorithm runs in
O(2 + ) time units on the DMM.

Finally, we show a permutation algorithm on the UMM.
This algorithm repeatedly performs transposing and row-
wise permutation. The resulting algorithm runs in O((2 +

%’)\/?) time units on the UMM, respectively.

F. Our Contribution: the sums and the prefix-sums algo-
rithms on the DMM and the UMM

Suppose that an array a of n numbers is given. The
prefix-sums of a is the array of size n such that the i-th
(0 <i<n-—1)element is a[0] + a[1] + - - - + ali]. Clearly,
a sequential algorithm can compute the prefix sums by exe-
cuting a[i+1] < a[i+1]+a[é] forall i (0 < i <n—1). The
computation of the prefix-sums of an array is one of the most
important algorithmic procedures. Many algorithms such as
graph algorithms, geometric algorithms, image processing
and matrix computation call prefix-sums algorithms as a
subroutine. In particular, many parallel algorithms uses a
parallel prefix-sums algorithm. For example, the prefix-sums
computation is used to obtain the pre-order, the in-order, and
the post-order of a rooted binary tree in parallel [2]. So, it
is very important to develop efficient parallel algorithms for
the prefix-sums.

This paper shows an optimal prefix-sums algorithm on
the DMM and the UMM. We first show that the sum of
n numbers can be computed in O(Z + 2t + [logn) time
units using p threads on the DMM and the UMM with
width w and latency . We then go on to discuss the lower
bound of the time complexity and show three lower bounds,
Q(2)-time bandwidth limitation, Q(%l)-time latency limi-
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tation, and (/logn)-time reduction limitation. From this
discussion, the computation of the sum and the prefix-
sums takes at least Q(2 + %’ + llogn) time units on the
DMM and the UMM. Thus, the sum algorithm is optimal.
For the computation of the prefix-sums, we first evaluate
the computing time of a well-known naive algorithm [29],
[4]. We show that a naive prefix-sums algorithm runs in
O(%gﬂ + %g—" + llogn) time. Hence, this fact shows
this naive prefix-sums algorithm is not optimal and it has an
overhead of factor logn both for the bandwidth limitation
- and for the latency limitation 2 Finally, we show an
optimal parallel algorithm that computes the prefix-sums of
n numbers in O(Z + %l + llogn) time units on the DMM
and the UMM. However, this algorithm uses work space of
size n and it may not be acceptable if the size n of the input
is very large. We also show that the prefix-sums can also be
computed in the same time units, even if work space can
store only min(plogp, wllog(wl)) numbers.

Several techniques for computing the prefix-sums on
GPUs have been shown in [29]. They have presented a com-
plicated data routing technique to avoid the bank conflict in
the computation of the prefix-sums. However, their algorithm
performs memory access to distant locations in parallel and
it performs non-coalesced memory access. Hence it is not
efficient for the UMM, that is, the global memory of GPUs.
In [30] a work-efficient parallel algorithm for prefix-sums
on the GPU has been presented. However, the algorithm
uses work space of nlogn, and also the performance of the
algorithm has not been evaluated.

This paper is organized as follows. We first define the
DMM and the UMM in Section Il. In Section IlI, we
evaluate the performance of the DMM and the UMM for the
contiguous access and the stride access to the memory. Sec-
tion 1V discusses lower bounds obtained by the bandwidth
limitation and the latency limitation. Section V presents
algorithms that perform the transpose of 2-dimensional array
on the DMM and the UMM. In Section VI, we show that
any permutation on an array can be done efficiently on the
DMM. Section VII presents a permutation algorithm on the
UMM. Using the contiguous access, we show that the sum
of n numbers can be computed in O(2 + 2 +{logn) time
units in Section VIII. We then go on to discuss the lower
bound of the time complexity and show three lower bounds,
Q(2)-time bandwidth limitation, Q(%’)—time latency limita-
tion, and (! logn)-time reduction limitation in Section IV.
Section IX shows a naive prefix-sums algorithm, which
runs in O(20&n 4 ntEn 4 7166p) time units. Finally, we
show an optimal paraﬁel prefix-sums algorithm running in
oz + ";’ +1logn) time units. Section XI offers conclusion
of this paper.

Il. PARALLEL MEMORY MACHINES: DMM AND UMM

We first introduce the Discrete Memory Machine (DMM)
of width w and latency I. Let m[¢] (i > 0) denote a memory



cell of address ¢ in the memory. Let B[j] = {m[j],m[j +
w],m[j + 2w],m[j + 3w],...} (0 <j < w— 1) denote the
j-th bank of the memory. Clearly, a memory cell m[] is in
the (i mod w)-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in
a time unit. Also, we assume that / time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus, it
takes k 4+ 1 — 1 time units to complete k£ continuous access
requests to a particular bank.

Blo] B[1] B[2] B3]

0 1 2 3 0 1 2 3 |Al0]

4 5 6 7 4 5 6 7 |All

8 9 10 || 11 8 9 10 | 11 |A[2]

12 1|23 (|14 || 15 12 | 13 | 14 | 15 |A[3]
[ [ [ [ |

memory banks of DMM address grdups of UMM

Figure 3. Banks and address groups for w = 4

Let 7(0),T(1),...,T(p — 1) denote p threads on the
memory machine. We assume that p threads are partitioned
into £ groups of w threads called warps. More specifically,
p threads are partitioned into 2 warps W(0), W (1), ...,
W(E—1) suchthat W (i) = {T(i-w), T(i-w+1),..., T((i+
1)-w-1)} 0 < i < 2 —1). Warps are activated
for memory access in turn, and w threads in a warp try
to access the memory in the same time. In other words,
W(0),W(1),...,W(w — 1) are activated in a round-rohin
manner if at least one thread in a warp requests memory
access. If no thread in a warp needs memory access, such
warp is not activated for memory access and is skipped.
When W (3) is activated, w threads in W (i) send memory
access requests, one request per thread, to the memory bank.
We also assume that a thread cannot send a new memory
access request until the previous memory access request is
completed. Hence, if a thread send a memory access request,
it must wait [ time units to send a new memory access
request.

For the reader’s benefit, let us evaluate the time
for memory access using Figure 4 on the DMM for
p 8 w 4, and [ 3. In the fig-
ure, p 8 threads are partitioned into 2 2
warps W(0) = {T(0),7(1),7(2),T(3)} and W(1) =
{T(4),T(5),T(6),T(7)}. As illustrated in the figure, 4
threads in W (0) try to access m[0], m[1], m[10], and
m[6], and those in W (1) try to access m[8], m[9], m[14],
and m[15]. The time for the memory access are evaluated
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under the assumption that memory access are processed
by imaginary [ pipeline stages with w registers each as
illustrated in the figure. Each pipeline register in the first
stage receives memory access requests from threads in an
activated warp. Each i-th (0 < ¢ < w — 1) pipeline register
receives the request to memory bank M (%). In each time
unit, a memory request in a pipeline register is moved to
the next one. We assume that the memory access completes
when the request reaches a last pipeline register.

Note that, the architecture of pipeline registers illustrated
in Figure 4 are imaginary, and it is used only for evaluating
the computing time. The actual architecture should involves
a multistage interconnection network [23], [24] or sorting
network [25], [26], to route memory access requests.

Let us evaluate the time for memory access on the DMM.
First, access requests for m[0],m[1],m[6] are sent to the
first stage. Since m[6] and m[10] are in the same bank B[2],
their memory requests cannot be sent to the first stage in the
same time. Next, the m[10] is sent to the first stage. After
that, memory access requests for m[8], m[9], m[14], m[15]
are sent in the same time, because they are in different
memory banks. Finally, after [ — 1 = 2 time units, these
memory requests are processed. Hence, the DMM takes 5
time units to complete the memory access.

We next define the Unified Memory Machine (UMM for
short) of width w as follows. Let A[j] = {m[j - w],m[j -
w +1],...,m[(j + 1) - w — 1]} denote the j-th address
group. We assume that memory cells in the same address
group are processed in the same time. However, if they are
in the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, p threads are
partitioned into warps and each warp access to the memory
in turn.

Again, let us evaluate the time for memory access using
Figure 4 on the UMM for p = 8, w = 4, and [ = 3.
The memory access requests by W (0) are in three address
groups. Thus, three time units are necessary to send them
to the first stage. Next, two time units are necessary to send
memory access requests by W (1), because they are in two
address groups. After that, it takes / — 1 = 2 time units
to process the memory access requests. Hence, totally 3 +
2 4+ 2 =7 time units are necessary to complete all memory
accesses.

I1l. SEQUENTIAL MEMORY ACCESS OPERATIONS

We begin with simple operations to see the potentiality
of the DMM and the UMM. Let p and w be the number of
threads and the width of the memory machines. We assume
that an array m of size n is arranged in the memory. Let
m[i] (0 < i < n — 1) denote the i-th word of the memory.
We assume that w < p and n is divisible by p. We consider
two access operations to the memory such that each of the p
threads accesses to the % memory cells out of the n memory
cells. Suppose that array m is arranged in a 2-dimensional
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Figure 4.  An example of memory access

array m, of size 2 x p (i.e. % rows and p columns) such
that me[d][j] =m[i-p+j] forall sand j (0 <i< 2 -1
and 0 < j < p—1). Similarly, let ms be a 2-dimensional
array of size p x 2 (i.e. p rows and 2 columns) such that
ms[i][j] = m[i- 2 + ] forall ¢ and j (0 <7 < p—1and
0<ji< %— 1). The contiguous access and the stride access
can be written as follows:

[Contiguous Access]
fort<0to 2 -1
for i < 0 to p— 1 do in parallel
T(4) accesses to m[t][i]] (=m[t-p+1])

[Stride Access]
fort + 0 to % -1

for i <~ 0 to p—1 do in parallel
T(é) accesses to m,[d][t] (=ml[i- 2 +1])

The readers should refer to Figure 2 for illustrating the con-
tiguous and stride accesses for n = 20, p = 4, and % =5.
At time ¢ = 0, p threads access to contiguous locations
m[0], m[1],m[2], and m[3] in the contiguous access, while
they access to distant locations m[0], m[5], m[10], and m[15]
in the stride access.

Let us evaluate the time necessary to complete the con-
tiguous access and the stride access. In the contiguous
access, w threads in each warp access memory cells in
different memory banks. Hence, the memory access by a
warp takes [ time units. Also, the memory access requests
by a warp is sent in every 1 time unit. Since we have
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£ warps, the access to p memory cells by p threads can
be completed in £ 41 — 1 time units. Since this access
operation is repeated % times, the contiguous access takes

(Z+1—-1)-2=0(2 + =) time units on the DMM. In
the contiguous access on the UMM, each warp access to the
memory cells in the same address group. Thus, the memory
access by a warp takes [ time unit and the whole contiguous

access is completed in O(2 + %l) time units.

The performance analysis of the stride access on the
DMM is a bit complicated. Let us start with a simple case:
% = w. In this case, the p threads access to p memory cells
m[t], m[w + t],m[2w + t],...,m[(p — 1)w + ¢] for each ¢
(0 <t < w —1). Unfortunately, these memory cells are in
the same memory bank B([t]. Hence, the memory access by
a warp takes w + [ — 1 time units and the memory access
to the p memory cells takes w - 2 +1—~1=p+1—1 time

of t mod w, (%

units. Thus, the stride access when 2 = w takes at least
(p+1—-1)-2=0(n+ =) time units.

Next, let us consider general case. The w threads in the
first warp access to mf[t], m[% +t],m[25 +1],...,m[(w —
1)7 +¢] for each ¢ (0 < ¢ < w —1). These w memory
cells are allocated in the banks B[t mod w], B[(% +t) mod
w], B[(2% +t) mod w], ..., B[((w 1)2 +t) mod w]. Let
L LCM( ,w) and G GCD(%,w) be the Least
Common Mulplple and the Greatest Common Divisor of 2
and w, respectively. From the basic number theory, it should
be clear that ¢t mod w = (£ - 7+ t) mod w, and the values

+#)modw, ..., (k= 1)-2+8) modw
are distinct. Thus the w memory cells are in the % =

& banks B[t mod w], B[(% + t) mod w], B[(2] + t) mod
w] ,B[((§ — 1) +t) "mod w] equally, and each bank
has G memory ceIIs of the w memory cells. Hence, the w
threads in a warp take G +1—1 time units for each ¢, and the
p threads take G- Z +1—1 time unlts for each ¢. Therefore,
the DMM takes (G - PHl-1)-2 =02 + 1) time
units to complete the stride access. If & = w then G = w
and the time for the stride access is O(n + ”l) If 2 and w
are co-prime, G = 1 and the stride access takes o2+ %’)
time units.

Finally, we will evaluate the computing time of the stride
access on the UMM. If 2 > w (i.e. n > pw), then the w
memory cells are accessed by w threads in a warp are in
the different address group. Thus, w threads access to w
memory ceIIs in w4+ 1 — 1 time units, and the stride access
takes (w-Z4+1-1)-2 = O(n+ 2) time units. When

P<w (| e n < pw), the w memory ceIIs accessed by w
threads in a warp are in at most [#] < % address
groups. Hence, the stride access by p threads for each ¢ takes
at most 2 - 2 +1—-1= 2 +1—1 time units, and thus, the
whole stride access takes ( +1-1)-2 = O("—2 + 2 time
units. Consequently, the stride access can be compfeted in
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O(min(n, pw) +
we have,

Theorem 1: The contiguous access and the stride access
on the DMM and the UMM can be completed in time units
shown in Table I.

Suppose that we have two arrays a and b of size n
each. The copy operation from a and b can be done by
the contiguous read and the contiguous write in an obvious
way. Since both the DMM and the UMM can perform the
contiguous access in O( % + %’) time units from Theorem 1,
we have,

Corollary 2: The copy between two arrays of size n each
can be done in O(Z + 2) time units using p threads on the
DMM and on the UMM with width w and latency 1.

%’)) time units for all values of 2. Thus,

IV. THE LOWER BOUNDS OF THE COMPUTING TIME AND
THE LATENCY HIDING

Let us discuss the lower bound of the computing time of
the DMM and the UMM for non-trivial problems, which
require to access all words in an input array of size n.

Since the bandwidth of the memory is w, at most w words
in the memory can be accessed in a time unit. Thus, it takes
at least () time to solve a non-trivial problem. We call
the Q(7)-time lower bound the bandwidth limitation.

Slnce the memory access takes latency [, a thread can send
at most t memory access requests in ¢ time units. Thus,
the p threads can send at most ”t access requests totally.
Since at least n memory access requests to solve a non-
trivial problem, ’}t > m must be satisfied. Thus, at least
t = Q(2) time units are necessary. We call the Q("l) time
lower bound the latency limitation.

From the discussion above, we have,

Theorem 3: Both the DMM and the UMM with p threads,

width w, and latency I takes at least (2 + ”;l) time units
to solve a non-trivial problem of size n.
From Theorem 3, the copy operation for Corollary 2 is
optimal. In the following sections, we will show algorithms
for data movement running in O(2 + 2 time. Since data
movements are non-trivial problems tftey have a lower
bound of Q( + p) time units. Hence, the algorithms for
data movement are optimal.

Let us discuss two factors, ¢ for bandwidth limitation and
2 for latency limitation. If 2 > nL that is, wl < p, then the
bandwidth limitation domlnates the latency limitation. As
illustrated in Figure 4, both the DMM and the UMM have
wl imaginary pipeline registers. Each thread can occupy one
of the wl imaginary pipeline registers for memory access.
Thus, we need at least wl threads to fill all the pipeline
registers with memory access requests. Otherwise, that is,
if wl > p, then a set of wl pipeline registers always has
an empty one. It follows that, for the purpose of hiding the
latency overhead, the number p of threads must be at least
the number wl of the pipeline registers.



Table |

THE RUNNING TIME FOR THE CONTI

GUOUS ACCESS AND THE STRIDE ACCESS

DMM UMM
Contiguous Access oz + %’) o(Z + %’)
1 n n nl . n2 nl
Stride Access o(s - GCD(E, w) + ?) O(min(n, W) + 7)

n =#data, p =#threads, w =memory bandwidth, { =memory latency

V. TRANSPOSE OF A 2-DIMENSIONAL ARRAY

Suppose that a 2-dimensional array a and b of size
v/n x y/n is arranged in the memory. The transpose of the
2-dimensional array is a task to move a word of data stored
in a[#][5] to b[4][¢] for all (0 <i,j <+/n—1).

Let us start with a straightforward transpose algorithm
using the contiguous access and the stride access. The
following algorithm transposes a 2-dimensional array a of

size \/n x \/n.

[Straightforward transposing algorithm]
fort < 0 to 71
fori < 0 to p—1 do in parallel
jet-p+i)/yn
k< (t-p+1i) mod/n
T(¢) performs b[j][k] < a[k][J]

On the PRAM, simultaneous reading and simultaneous
writing by processors can be done in O(1) time. Hence,
this straightforward transposing algorithm runs in 0(%)
time on the PRAM. Also, it takes at least 2(Z) time to
access n words by p processors on the PRAM. Thus, this
straightforward transposing algorithm is time optimal for the
PRAM.

Since the straightforward algorithm involves the stride
access, it is not difficult to see that the DMM
and the UMM take O(Z - GCD(ym,w) + ) time
units and O(min(n,g—:) + %l) time units for transpos-
ing a 2-dimensional array, respectively. On the DMM,
GCD(y/n,w) = w if \/n is divisible by w. If this is the
case, the transpose takes O(n) time units the DMM. We will
show that, regardless of the value of n, the transpose can be
done in O(g + %’) time units both on the DMM and on the
UMM.

We first show an efficient transposing algorithm on the
DMM. The technique used in this algorithm is essentially
the same as the diagonal block reordering presented in [18].
The key idea is to access the array in diagonal fashion. The
details of the algorithm are spelled out as follows:

[Transpose by the diagonal access on the DMM]
fort + 0 to % -1
for i « 0 to p—1 do in parallel
j (t-p+i)/v/n
k<« (t-p+1i) mod+/n

a b

T(0) | T(4) | T(8) |T(12) T(0) |T(13) |T(10) | T(7)
T(13) | T(1) | T(5) | T(9) T(4) | T(1) |T(14) |T(11)
T(10) | T(14) | T(2) | T(6) T(8) | T(5) | T(2) |T(15)
T(7) | T(11) | T(15) | T(3) T(12) | T(9) | T(6) | T(3)

Figure 5. Transposing on the DMM

T(¢) performs b[(j + k) mod /n][k] < a[k][(j + k) mod /n]

The readers should refer to Figure 5 for illustrating the
indexes of threads reading from memory cells in a and
writing in memory cells of b for n = p = 16 and
w = 4. From the figure, we can confirm that threads
T(j-4+0), T(j-4+1),T(j-4+2),T(j-4+3) read from
memory cells in diagonal location of a and write to memory
cells in diagonal location of b for every j (0 < j < 3). Thus,
reading and writing to memory banks by w threads in a warp
are different. Hence, p threads can copy p memory cells in
£ +1—1 time units and thus the total computing time is
(Z2+1-1) Sy = O(&+ %l) time units. Therefore, we have,

Lemma 4: The transpose of a 2-dimensional array of size
v/n x y/n can be done in O(% + ”;l) time units using p
threads on the DMM with memory width w and latency 1.

Next, we will show that the transpose of a 2-dimensional
array can be also done in O(2 + %’) on the UMM if every
thread has w local registers. As a preliminary step, we will
show that the UMM can transpose a 2-dimensional array of
size w x w in wl time units using w threads with each thread
having a local storage of size w. We assume that each thread
has w local registers. Let r;[0], 7;[1],...r;[w — 1] denote w
local registers of T(z).

[Transpose by the rotating technique on the UMM]
fort+~O0tow—1
for i « 0 to w — 1 do in parallel
T (i) performs r;[t] « a[t][(t + %) mod w]
fort <~ 0tow—1
for i < 0 to w — 1 do in parallel
T(¢) performs b[t][(t — ) mod w] < 7;[(t — ¢) mod w]
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Figure 7. Transposing on the UMM

Let (¢,7) denote the value stored in a[¢][4] initially. The
readers should refer to Figure 6 for illustrating how these
values are transposed.

Let us confirm that the algorithm above correctly trans-
pose the 2-dimensional array a. In other words, we will show
that, when the algorithm terminates, b[¢][j] stores (j,%). It
should be clear that, the value stored in r;[t] is (¢, (t+4) mod
w). Since ((t —4) mod w, t) is stored in 7;[(¢t — i) mod w],
it is also stored in b[¢][(t — 7) mod w] when the algorithm
terminates. Thus, every b[i][j] (0 < 4,j < w — 1) stores
(4,4). This completes the proof of the correctness of our
transpose algorithm on the UMM.

Let us evaluate the computing time. In the reading oper-
ation r;[t] < a[t][(t + ¢) mod w], w memory cells a[t][(t +
0 mod w)], a[t][(t+1 mod w)], ..., a[t][(t+w—1 mod w)]
are in the different memory banks. Also, in the writing op-
eration b[t][(t — ) mod w] < 7;[(t —4) mod w], w memory
cells b[t][(t — 0 mod w)], b[¢][(t — 1 mod w)],...,b[t][(t —
(w — 1) mod w)] are in the different memory banks. Thus,
each reading and writing operation can be done in O(1) time
units and this algorithm runs in O(wl) time units.

The transpose of a larger 2-dimensional array of size
v/ x 4/n can be done by repeating the transpose of a
2-dimensional array of size w x w. The algorithm has
two steps. More specifically, the 2-dimensional array is
partitioned into % X % subarrays of size wx w. Let A[i][4]
(0 <i,j < & —1) denote the subarray of size w x w. First,
each subarray A[i][j] is transposed independently using w
threads (local transpose). After that, the corresponding words
of A[d][j] and A[j][¢] are swapped for all ¢ and j in an
obvious way (global transpose). Figure 7 illustrates the
transposing algorithm on the UMM.

Let us evaluate the computing time to complete the
transpose of a v/n x 1/n 2-dimensional array. Suppose that
we have p (< ) threads and partition the p threads into
£ groups with w threads each. We assign 5/Z = o
subarrays to each warp of w threads. Each of the £ warps
transposes each of the 2 subarrays in parallel. It takes
O(w- (£ +1)) = O(p +wl) time units. The transposing of
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2 subarrays is repeated 1% times, the total computing time
for transposing all subarrays is 2 -O(p+wl) = O(2 + %’)
time units. It should have no oﬁfﬁculty to confirm that the
global transpose can be also done in O(Z + %’) time units.
Thus we have,

Lemma 5: The transpose of a 2-dimensional array of size
V/n x /n can be done in O(Z + 24) time using p (w < p <
=) threads on the UMM with each thread having w local
registers.

Finally, we will show the case that each thread of the
UMM has r (< w) local registers. We first show how we
transpose a 2-dimensional array a of size \/rw x \/rw using
w threads. We first partition w threads into /rw groups of
/2 threads each. Each group has totally /% -r = \/rw
local registers and works as a single thread with /rw
local registers. Each group i (0 < i < /%) with /rw
local registers can read and store /rw data a[0][(¢ +
0) mod /rw], a[1][(i + 1) mod v/rw],...,a[\/rw — 1][(i +
Vrw — 1) mod /rw] in the local registers. After that,
they are written into b[(¢ 4+ 0) mod /rw][0], a[(i + 1) mod
Vrwl[l],...,a[(@ + /rw — 1) mod /rw][yrw — 1]. All
groups read and write the arrays in turn, the transpose of
a 2-dimensional array a of size \/rw x /rw can be done
in O(ly/rw) time units.

Similarly to Lemma 5, we perform the transpose of a 2-
dimensional array a of size v/n x +/n. For this purpose,
we partition a into /7= x /7% subarrays of size \/rw x
\/rw. Let us evaluate the computing time. The p threads can
transpose £ subarrays in parallel in O(y/rw - (2 +1)) =
O(py/Z + I/rw) time. Since we have - subarrays, this
transpose operation is repeated /£ % times. Thus,

the local transpose can be done in O(p\/§+. l\/%.) o =
O(As + % /F) =0(( +3) - /%) time units. The
global transpose is just a copy of data, it can be done in
oz + %’) time units. Hence, we have,

Lemma 6: The transpose of a 2-dimensional array of size
v/n x y/n can be done in O((Z + %l) -/ E) time using p
(w < p < 7) threads on the UMM with each thread having
r (r < w) local registers.

Lemma 6 implies that the transpose by the UMM with r
local registers has a overhead of factor \/g .

V1. PERMUTATION OF AN ARRAY ON THE DMM

In Section V, we have presented algorithms to transpose a
2-dimensional array on the DMM and the UMM. The main
purpose of this section is to show algorithms that perform
any permutation of an array. Since a transpose is one of the
permutations, the results of this section is a generalization
of those presented in Section V.

Let a and b be one dimensional arrays of size n each,
and P be a permutation of (0,1,...,n — 1). The goal of
permutation of an array is to copy a word of data stored
in a[i] to b[P(3)] for every i (0 < i < m — 1). We assume
that, permutation P is given in offline. We will show that,



a ] r1 T2 T3 b
0,0 | (0,1) | (0,2 | (0,3 0,0 | [(0,1) | [(0,2) | (0,3 0,0) | (1,0) | 20) | (3,0
10 | (1Y) | 12 | (L3 @Y ({12 (@3] (10 01 | 1Y) |21 | (B
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20 | 2D |22 | (23 22|23 ][0 (21 02 |12 |22 | (B2
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Figure 6. Transposing of a 2-dimensiona array of size w x w on the UMM

for given any permutation P, permutation of an array can
be done efficiently on the DMM and the UMM.

Let us start with evaluating the performance of the
straightforward permutation algorithm. Suppose we need to
do permutation of an array a of size n and permutation P
is given.

[Straightforward permutation algorithm]
fort<—0t0%—1do
for j + 0to p—1 do in parallel
it-p+j
T(j) performs b[P(i)] « ali]

Clearly each ¢ takes O(1) time unit on the PRAM. Hence,
the straightforward algorithm runs in O(7) time units on the
PRAM.

This straightforward permutation algorithm also works
correctly on the DMM and the UMM. However, it may take
a lot of time to complete the permutation. In the worst case,
this straightforward algorithm takes O(n) time units on the
DMM and the UMM if all writing operation to b[P(i)] are
in the same bank on the DMM or in the different address
groups on the UMM. We will show that any permutation of
an array of size n can be done in O(Z + ";’) time units on
the DMM and the UMM.

If we can schedule reading/writing operations for permu-
tation such that w threads in a warp read from distinct banks
and write in distinct banks on the DMM, the permutation
can be done efficiently. For such scheduling, we use the
following important graph theoretic result [27], [28]:

Theorem 7 (Konig): A regular bipartite graph with degree

p is p-edge-colorable.
Figure 8 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Each edge is painted by
one of the 4 colors such that no node is connected to edges
with the same color. In other words, no two edges with the
same color share a node. The readers should refer to [27],
[28] for the proof of Theorem 7.

We show a permutation algorithm on the DMM. Suppose
that a permutation P of (0,1,...,n— 1) is given. We draw
a bipartite graph G = (U, V, E) of P as follows:

Figure 8. A regular bipartite graph with degree 4

« U ={B[0],B[1],B[2],...,Blw—1]} is a set of nodes
each of which corresponds to a bank of a.
« V ={B|0],B[1],B][2],-..,Blw—1]} is a set of nodes
each of which corresponds to a bank of b.
« For each pair source a[i] and destination b[P(7)], E
has a corresponding edge connecting B[i mod w](€ U)
and B[P(i) mod w](€ V).
Clearly, an edge (BJ[u], B[v]) (0 < u,v < w—1) corresponds
to a word of data to be copied from bank B[u] of a to
Blv] of b. Also, G = (U, V, E) is a regular bipartite graph
with degree 7*. Hence, G is ;-colorable from Theorem 7.
Suppose that all of the n edges in E are painted by I colors
0,1,..., 2—1.We determine value s; ; (0 <7 < +—1,0 <
Jj<w—1,0<s;; <n—1)such that an edge (B[s; ; mod
w], B[P(s;,;) mod w]) with color ¢ corresponds to a pair of
source a[s; ;] and destination b[P(s; ;)]. It should have no
difficulty to confirm that, for each i,
o w banks Blsi,0 mod w], B[s;1 mod
w],...,B[s;w—1 mod w] are distinct, and
o w banks values B[P(s;o) mod w], B[P(s;1) mod
w],...,B[P(siw-1) mod w] are distinct.
Thus, we have an important lemma as follows:
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Lemma 8: Let s; ; denote a source defined above. For
each ¢, we have, (1) a[s; o], a[si,1], - - . a[siw—1] are in dif-
ferent banks, and (2) b[P(s,0)], b[P(5i,1)], - - - B[P (84,w—1)]
are in different banks.

We can perform the bank conflict-free permutation using
s4,5. The details are spelled out as follows.

[Permutation algorithm on the DMM]
fort<—0to%—1do
for j < 0to p—1 do in parallel
i+t-p+j
k Si/w,i mod w
T(j) performs b[P(k)] < a[k]

Since b[P(k)] < alk] are performed for all & (0 <
k < n — 1), this algorithm performs data movement along
permutation P correctly. We will show that this permutation
algorithm terminates in O(Z: + oly time units. For ¢ = 0,
warp W(q) (0 < ¢ < £ —1) withw threads T (wq), T(wq+
1),..., T(w(g + 1) — 1) performs b[P(sq,0)] « a[sq,0].
b[P(sq1)] + a[squ], .-+ B[P(sqw—1)] + a[Squw—1] IN
parallel. From Lemma 8, these w threads read from different
banks in a and write to different banks in b. Thus, p threads
complete operations for ¢ = 0 in O(Z 4 1) time units.
Similarly, we can prove that the operation for every ¢ can
be done in O(£ +1) time units. Thus the total running time
is 2-0(% +1) = O(2 + 1L) time units. Thus, we have,

Theorem 9: Any permutation on an array of size n can
be done in O(Z + o0y time units using p threads on the
DMM with width w and latency I.

VII. PERMUTATION OF AN ARRAY ON THE UMM

The main purpose of this section is to show a permutation
algorithm on the UMM. Our permutation algorithm uses the
transpose algorithm on the UMM presented in Section V.

We start with a small array. Suppose that we have an array
a of size w and permutation P on it. Since all elements in
a are in the same address group, they can be read/written in
a time unit. Thus, any permutation of an array a of size w
can be done in O(!) time units.

Next, we show a permutation algorithm for an array a
of size w?. We can consider that a permutation is defined
on a 2-dimensional array a. In other words, the goal of
permutation is to move a word of data stored in a[i][j] to
a[P(i - w + §)/w][P(i - w + §) mod w] for every i and
j (0 < i,7 < w—1). We first show an algorithm for
the row-wise permutation which is a permutation satisfying
P(i-w+j)/w =i forall 4 and j. Figure 9 shows an example
of row-wise permutation. In this figure, we assume that each
a[d][4] is initially storing (P(i-w + j)/w, P(i -w + j) mod
w]) = (4, P(i - w + j) mod w]). After the permutation, it
is copied to a[i][P(i - w + j) mod w] and thus, each a[¢][;]
stores (3, j).

We use p threads (w < p < w?) partitioned into
warps W(0), W(1),...,W(E& — 1) with w threads each.

P
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Figure 9. Row-wise permutation

The details of the row-wise permutation algorithm are as
follows.

[Row-wise permutation algorithm]
fort < 0 to “’Tf -1
for i <~ 0 to £ do in parallel
W (i) performs permutation of the (¢ - £ 4 4)-th row.

Clearly, each row of an array a of size w? corresponds to
an address group. For each ¢ and 4, W () can perform a
permutation of a row in O(l) time units. Hence, for each
t, W(0),W(1),...,W(£ —1) can perform the row-wise
permutation of 2 rows in O(£ + 1) time units. Thus, the
row-wise permutation algorithm terminates in “’Tf (E+1) =

O(w + ’”%l) time units. Hence we have,

Lemma 10: Any row-wise permutation of a two-
dimensional array of size w x w can be done in O(w + ’”72’)
time units using p threads (w < p < w?) on the UMM with
width w and latency 1.

We next show an algorithm for the column-wise permuta-
tion, which is a permutation satisfying P(i-w+75) mod w =
j for all  and j. This can be done by three steps as follows:

[Column-wise permutation on the UMM]

Step 1: Transpose the two-dimensional array

Step 2: Row-wise permute the two-dimensional array
Step 3: Transpose the two-dimensional array

Figure 10 illustrates the data movement of the three steps.
Again, in this figure, we assume that each a[¢][;] is initially
storing (P(i - w + j)/w, P(i - w + §) mod w) = (P(i -w +
j) mod w, j). After the transpose in Step 1, a[j][¢] stores
(P(i-w + j) mod w, j). The row-wise permutation is per-
formed such that a[j][¢] stores (4, 7). Finally, by transposing
in Step 3, a[i][j] stores (i, j).

Since column-wise permutation can be done by trans-
posing and row-wise permutation, from Lemma 5 and
Lemma 10, we have,

Lemma 11: Any column-wise permutation of a two-
dimensional array of size w x w can be done in O(wl)
time units using w threads on the UMM with each thread
having w local registers.

We next show any permutation of a 2-dimensional array
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Figure 10. Column-wise permutation

of size w x w can be done in O(wl) time units using
w threads on the UMM by the row-wise permutation and
the column-wise permutation. For a given permutation P
on a 2-dimensional array a, we draw a bipartite graph
G = (U,V,E) as follows:

o« U = {A[0], A[1], A[2],..., A[w — 1]} is a set of nodes
each of which corresponds to an address group of
source.

o« V={A[0], A[1], A[2],..., A[w —1]} is a set of nodes
each of which corresponds to an address group of
destination.

« For each pair source a[3][j] and destination a[P(i-w +
J)/w][P(i-w+j) mod w], E has a corresponding edge
connecting A[i](€ U) and A[P(i - w + j)/w](€ V).

For example if a word of data in a[1][3] is copied to a[2][4]
by permutation P, an edge is drawn from node A[1] in U
and node A[2] in V. Clearly, G is a regular bipartite graph
with degree w. From Theorem 7, this bipartite graph can
be painted using w colors such that w edges painted by the
same color never share a node.

Suppose that, for a given permutation P on a 2-
dimensional array a of size w x w, we have painted edges
inw colors 0,1, ..., w— 1. Since each edge corresponds to
a data stored in a, we can think that data is painted by the
same color as the corresponding edge. Permutation can be
done by three steps as follows:

[Permutation on the UMM]

Step 1: Row-wise permute the 2-dimensional array.
Step 2: Column-wise permute the 2-dimensional array.
Step 3: Row-wise permute the 2-dimensional array.

Let us see how permutation of each step is determined by
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edge coloring. As before, we assume that a[¢][;] is storing
(P(i-w+j)/w, P(i-w+j) mod w) and show that after the
permutation algorithm is executed a[é][j] stores (i,j). The
readers should refer to Figure 11 for illustrating the data
movement of the permutation algorithm for w = 4. From
the figure we can confirm the following lemma:

Lemma 12: Suppose that data stored in a 2-dimensional
array of wxw are painted by w colors using edge coloring of
the corresponding bipartite graph above. We have: (1) data
in the same row are painted by different colors, and (2) data
painted by the same color has different row destination.
Since nodes in U are connected to w edges painted by
different colors, we have (1) above. Also, since w edges
painted by the same color connected to different nodes in

V', we have (2) above.
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Figure 11. Illustrating a data movement of the permutation algorithm on
the UMM

In Step 1, row-wise permutation is performed such that
data with color ¢ (0 < ¢ < w — 1) are stored in the -
th column. From Lemma 12 (1), w data in each row are
painted by w colors, Step 1 is possible. Step 2 uses column-
wise permutation to move data to the final row destination.
From Lemma 12 (2), w data in each column has different
w row destination, Step 2 is possible. Finally, in Step 3,
row-wise permutation is performed to move data to the final
column destination.

Since the permutation algorithm on the UMM performs
the row-wise permutation and the column-wise permutation,
from Lemma 10 and Lemma 11, we have,

Lemma 13: Any permutation of an array of size w? can
be done in O(wl) time units using w threads on the UMM
with each thread having local memory of w words.

We go on to show a permutation algorithm on a larger
array a. Suppose we need to perform permutation of array



a of size w*. We can consider that an array a is a 2-
dimensional array of size w? x w?. We use the permutation
algorithm for Lemma 13 to perform the row-wise permuta-
tion of the 2-dimensional array of size w? x w?. Similarly
to the permutation algorithm for Lemma 13, we generate a
bipartite graph with G = (U, V, E) such that

« U =1{0,1,2,...,w% — 1} is a set of nodes each of
which corresponds to a row of source.

e V =1{0,1,2,...,w% — 1} is a set of nodes each of
which corresponds to a row of destination.

« For each pair source a[é][j] and destination a[P (i -w +
7)/w?][P(i - w + j) mod w?], E has a corresponding
edge connecting i(€ U) and P(i - w + j)/w(€ V).

Similarly to the permutation algorithm for Lemma 13, any
permutation of a 2-dimensional array of size w? x w? can
be done in three steps, row-wise permutation, column-wise
permutation, and then row-wise permutation. The key idea is
to use the permutation algorithm for Lemma 13 to perform
the row-wise permutation and the column-wise permutation.
We will discuss the details of the row-wise permutation and
the column-wise permutation of a 2-dimensional array of
size w? x w?

We show that the row-wise permutation of a 2-
dimensional array of size w? x w? can be done in O(w® +
“’74’) time units using p threads on the UMM. The p threads
are partitioned into 2 warps. First, each of the Z warps
assigned a row of the first £ rows performs the row-wise
permutation of the first £ row in parallel. This can be done
by the permutation algorithm for Lemma 13, which runs
O(wl) time units. Note that, each of the w threads of a warp
requests at most O(w) memory access in the permutation
algorithm for Lemma 13. The first memory access requests
by the p threads in £ warps are completed £ + [ time
units. Since the memory access requests by p threads are
repeated O(w) times, the row-wise permutation of the first
£ rows is completed in O((2 + 1) - w) = O(p + wl) time
units. Since we have w? rows, this operation is repeated
w?/ 2 = ’”73 times. Thus, the row-wise permutation can be
done in O((p +wl) - “’Tf) =0(w? + “’T‘ll) time units on the
UMM.

Similarly to the row-wise permutation of a 2-dimensional
array of size w x w shown in Figure 10, the column-wise
permutation of a 2-dimensional array of size w? x w? can
be done by transpose, row-wise permutation, and transpose.
The transpose of a 2-dimensional array of size w? x w?
can be done in O(w?® + w%’) time units on the UMM from
Lemma 5. Also, the row-wise permutation can be done in
O(w® + “’74’) time units. Thus, the column-wise permutation

can be done in O(w?® + 1”74’) time units.

We are now in a position to show our permutation algo-
rithm for a 2-dimensional array of size w? x w?. Similarly
to permutation of a 2-dimensional array of size w x w,
permutation of a 2-dimensional array of size w? x w? can
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be done in three steps, row-wise permutation, column-wise
permutation and row-wise permutation. Since each step can
be done in O(w? + ’”74’) time on the UMM, any permutation
of a 2-dimensional array of size w? x w? can be done in
O(w? + “’741) time units on the UMM.

We can use the same technique for a permutation of an
array of size w* x w*. The readers should have no difficulty
to confirm that any permutation can be done in O(w" + “’78’)
time units on the UMM using p threads.

Repeating the same technique, we can obtain a permuta-
tion algorithm for an array of size n = w® x w°. Permutation
of a 2-dimensional array of size w® x w® can be done by
executing the row-wise permutation recursively three times
and the transpose for an array of size w®/2 x w®/? twice. If
the size n of an array satisfies n < w®®, that is, ¢ = O(1),
then the depth of the recursion is constant. If this is the case,
the computing time is O(w?~! + %) =0(¢+ %’). Thus,
we have,

Lemma 14: Any permutation of an array of size n can
be done in O(Z + ) time units (w < p < 2) on the
UMM with each thread having w local registers provided
that n < wP®,

Finally, if each register has only r (< w) local registers,
we can use the transpose algorithm for Lemma 6. If this is
the case, we have,

Theorem 15: Any permutation of an array of size n can
be done in O((Z + %) - /%) time units (w < p < %) on
the UMM with each thread having r (r < w) local registers
provided that n < w@®),

VIIl. AN OPTIMAL PARALLEL ALGORITHM FOR
COMPUTING THE SUM

The main purpose of this section is to show an optimal
parallel algorithm for computing the sum on the memory
machine models.

Let a be an array of n = 2™ numbers. Let us show an
algorithm to compute the sum a[0]+a[1]+- - -+a[n—1]. The
algorithm uses a well-known parallel computing technique
which repeatedly computes the sums of pairs. We implement
this technique to perform contiguous memory access. The
details are spelled out as follows:

[Optimal algorithm for computing the sum]
for t +< m — 1 downto 0 do
for i < 0 to 2! — 1 do in parallel
ali] < ali] + a[i + 2]

Figure 12 illustrates how the sums of pairs are computed.
From the figure, the reader should have no difficulty to
confirm that this algorithm compute the sum correctly.

We assume that p threads to compute the sum. For each ¢
(0 <t <m—1), 2! operations “a[i] < a[i] + a[i + 2!]” are
performed. These operation involve the following memory
access operations:

« reading from a[0],a[1],...,a[2¢ — 1],



Figure 12.

Illustrating the summing agorithm for n numbers

« reading from a[2!],a[2¢ 4+ 1],...,a[2- 2! — 1], and

« writing in a[0],a[1],...,a[2! — 1],
Since these memory access operations are contiguous, they
can be done in O(% + 277 + 1) time using p threads both
on the DMM and on the UMM with width w and latency [
from Theorem 1. Thus, the total computing time is

i 2t 9t] om  gm]
O(—+—+1) = O(—+—+1Im)
w D
t=0
n nl
= —+ — +11
O(w + s +llogn)
and we have,

Lemma 16: The sum of n numbers can be computed in
O(Z + 2L 4+ [logn) time units using p threads on the DMM
and on tlﬁe UMM with width w and latency I.

IX. A NAIVE PREFIX-SUMS ALGORITHM

We assume that an array a with n. = 2™ numbers is given.
Let us start with a well-known naive prefix-sums algorithm
for array a [29], [30], and show it is not optimal. The naive
prefix-sums algorithm is written as follows:

[A naive prefi x-sums algorithm]
fort+ 0Otop—1do
for i < 2¢ to n — 1 do in parallel
ali] + ali] + a[i — 2]

Figure 13 illustrates how the prefix-sums are computed.

We assume that p threads are available and evaluate the
computing time of the naive prefix-sums algorithm. The
following three memory access operations are performed for
each ¢t (0 <t < p—1): can be done by

« reading from a[2!],a[2t + 1],...,a[n — 2],

« reading from a[2! + 1],a[2t + 2],...,a[n —

o writing in a[2¢ + 1],a[2! + 2],...,a[n — 1].
Each of the three operations can be done by contiguous
memory access for n— 2 memory cells. Hence, the comput-
ing time of each ¢ is O(”‘T? + (T“T?t)l +1) from Theorem 1.

1], and
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The total computing time is:
p—1 t
n—2

So 2,

t=0 w

Thus, we have,
Lemma 17: The naive prefix-sums algorithm runs in

O(™esn 4 nllosn) time ynits using p threads on the DMM

and on the UMM with width w and latency I.
Clearly, from Theorem 3, the naive algorithm is not optimal.

n — 24)]
p

nllogn
p

lo
n gn+

+1) o( ),

w

X. OUR OPTIMAL PREFIX-SUMS ALGORITHM

This section shows an optimal prefix-sums algorithm
running in O(% + %’ + llogn) time units. We use
m — 1 arrays a,as,-..a,, 1 as work space. Each ay
(1 <t <m—1)can store 2¢ — 1 numbers. Thus, the total
size of the m — 1 arrays is no more than (2! — 1) + (22 —
1)+ .-+ (2m=1 — 1) = 2™ — m < n. We assume that the
input of n numbers are stored in array a,, of size n.

The algorithm has two stages. In the first stage, interval
sums are stored in the m — 1 arrays. The second stage uses
interval sums in the m — 1 arrays to compute the resulting
prefix-sums. The details of the first stage is spelled out as
follows.

[Compute the interval sumg|
for t « m — 1 downto 1 do
for i < 0 to 2¢ —1 do in parallel
at[i] — at+1[2 . l] + at+1[2 -1+ 1]

Figure 14 illustrated how the interval sums are computed.
When this program terminates, each a;[i] (1 <t < m —
1,0 <i < 2 —2) stores agfi - %] + agfi - 5+ + 1]+ --- +
ag[(i 4+ 1) - 55 —1].

In the second stage, the prefix-sums are computed by
computing the sums of the interval sums as follows:

[Compute the sums of the interval sumsg]
fort < 1tom—1do
for i «+- 0 to 2¢ — 2 do in parallel
begin
at+1[2 -1+ ].] < at[i]
at+1[2 -1+ 2] <~ at+1[2 -1+ 2] + at[i]
end
am[n — 1] < am[n — 2]+ ap[n — 1]

Figure 15 shows how the prefix-sums are computed. In the
figure, “ai41[2 - @ + 1] < a¢[é]” and “ai41[2 -7 + 2]
ag+1[2 - © + 2] + a.[d]” correspond to “copy” and “add”,
respectively.

When this algorithm terminates, each a,[i] (0 < i < 2t-)
stores the prefix sum a,[0] 4 ap[1] + - - - 4 ap[i]. We assume
that p threads are available and evaluate the computing
time. The first stage involves the following memory access
operations for each ¢t (1 <t <m —1):

« reading from a¢y1[0], az1[2], - - -, ary1[2F — 2],
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« reading from a¢y1[1], az1[3], - - ., a1 [28 — 1], and
o writing in a;[0], a¢[1], ..., a[2¢ — 1].
Since every two addresses is accessed, these four memory
access operations are essentially contiguous access and they
can be done in O(% + ZL 4 ]) time units. Therefore, the
total computing time of the firs stage is
p—1 I
= 02 +Z +1logn).
w p
The second stage consists of the following memory access
operations for each ¢t (1 <t <m —1):
« reading from a;[0], a;[1], ..., a:[2" — 2],
« reading from a¢y1[2], az1[4], - - ., a1 287 — 2],
o writing in az41[1], ar+1[3], - - ., ag1[287! — 3], and

110

. ertlng in ag41 [2], A1 [4]7 NN A | [2t+1 — 2]
Similarly, these operations can be done in 0(% + 2%’ +1)
time units. Hence, the total computing time of the second
stage is also O(% + %’ + llogn). Thus, we have,

Theorem 18: The prefix-sums of n. numbers can be com-
puted in O(Z + %l + llogn) time units using p threads on
the DMM and on the UMM with width w and latency [ if
work space of size n is available.

From Theorem 3, the lower bound of the computing time of
the prefix-sums is (2 + 2 + Ilogn).

Suppose that n is very large and work space of size n is
not available. We will show that, if work space no smaller
than min(plogp, wllog(wl)) is available, the prefix-sums
can also be computed in O(Z + %’ + llogn). Let k be



an arbitrary number such that p < k < n. We partition
groups with & (> p)

the input a with n numbers into

numbers each. Each ¢-th group (0 < ¢t < 7 — 1) has k
numbers a[tk],altk + 1],...,a[(t + 1)k — 1]. The prefix-
sums of every group is computed using p threads in turn as
follows.

<
n
3

[Sequential-parallel prefi x-sums algorithm]
fort+0to 2 —1do
begin
if(t # 0) a[tk] < a[tk] + a[tk — 1]
compute the prefix-sums of & numbers a[tk], a[tk + 1],
coal(t+ 1)k —1]
end

It should be clear that this algorithm computes the prefix-
sums correctly. The prefix-sums of &£ numbers can be
computed in O(£ + £ 4 Jlog k). The computation of the
prefix-sums is repeateé) % times, the total computing time is
Ok + 8 4 lloghk) - 2 = O(2 + o 4 2L28k) Thus, we
have,

Corollary 19: The prefix-sums of n numbers can be
computed in O(2 + 2 4 BL2ER) time units using p threads
on the DMM and on the UMM with width w and latency [
if work space of size k is available.

If £ > plogp then, "“ng < nlloglplogp) %l. If & >

= plogp
wllog(wl) then mlogk < "’1"5};2’31("5?;””) < . Thus, if
k > min(plogp,wllog(wl)) then the computing time is
o2 + 1),

XI. CONCLUSION

In this paper, we have introduced two parallel memory
machines, the Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM). We first evaluated the
computing time of the contiguous access and the stride
access of the memory on the DMM and the UMM. We
then presented an algorithm to transpose a 2-dimensional
array on the DMM and the UMM. Finally, we have shown
that any permutation of an array of size n can be done in
O(2Z+2L) time units on the DMM and the UMM with width
w and fatency I. Since the computing time just involves
the bandwidth limitation 2 and the latency limitation %’,
the permutation algorithms are optimal. This paper also
shows an optimal parallel prefix-sums algorithm that runs
in O(2 + 2L + [logn) time units.

Although the DMM and the UMM are simple, they
capture the characteristic of the shared memory and the
global memory of NVIDIA GPUs, Thus, these two parallel
computing models are promising for developing algorithmic
techniques for NVIDIA GPUs. As a future work, we plan
to implement various parallel algorithms developed for the
PRAM so far on the DMM and on the UMM. Also, NVIDIA
GPUs have small shared memory and large global memory.
Thus, it is also interesting to consider a hybrid memory
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machine such that threads are connected to a small memory
of DMM and a large memory of UMM.
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Abstract—The Discrete Memory Machine (DMM) is a the-
oretical parallel computing model that capture the essence of
the shared memory access of GPUs. We need to avoid the
bank conflicts for maximizing the bandwidth of the shared
memory access. Offline permutation of an array is a task to
copy of all elements in o into b along a given permutation.
The main goal of this paper is to implement a conflict-free
permutation algorithm on the DMM in a GPU. We have
also implemented straightforward permutation algorithms on
the GPU. The experimental results for 1024 float numbers
on NVIDIA GeForce GTX-680 show that a straightforward
permutation algorithm takes 246ns and 877ns for random
permutation and bit-reversal permutation, respectively. Quite
surpassingly, our conflict-free permutation algorithm runs in
165ns for random permutation and bit-reversal permutation
each although it performs more memory access operations. It
follows that our conflict-free permutation is 1.5 times faster
for random permutation and 5.3 times faster for bit-reversal
permutation.

Keywords-memory machine models, data movement, bank
conflict, shared memory, GPU, CUDA

I. INTRODUCTION

The GPU (Graphical Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images. Latest GPUs are designed for gen-
eral purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [1], [2]. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Ar-
chitecture) [3], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [4], since they have hundreds of
processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [3]. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-64 Kbytes. The global memory is
implemented as an off-chip DRAM, and has large capacity,
say, 1.5-6 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global memory
is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank
conflict of the shared memory access and the coalescing
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of the global memory access [4], [5], [6]. The address
space of the shared memory is mapped into several physical
memory banks. If two or more threads access to the same
memory banks in the same time, the access requests are
processed sequentially. Hence, to maximize the memory
access performance, threads of CUDA should access to
distinct memory banks to avoid the bank conflicts of the
memory accesses. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed in the same time. Thus,
CUDA threads should perform coalesced access when they
access to the global memory.

In our previous paper [7], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features
of the shared memory and the global memory of NVIDIA
GPUs. The outline of the architectures of the DMM and the
UMM are illustrated in Figure 1. In both architectures, a sea
of threads (Ts) are connected to the memory banks (MBs)
through the memory management unit (MMU). Each thread
is a Random Access Machine (RAM) [8], which can execute
fundamental operations in a time unit. We do not discuss the
architecture of the sea of threads in this paper, but we can
imagine that it consists of a set of multi-core processors
which can execute many threads in parallel. Threads are
executed in SIMD [9] fashion, and the processors run on
the same program and work on the different data.

MBs constitute a single address space of the memory. A
single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (¢ mod w)-th bank, where w is the number
of MBs. The main difference of the two architectures is the
connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM, the
address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of
the MBs can be accessed in each time unit. On the other
hand, different addresses of the MBs can be accessed in
the DMM. The DMM and the UMM capture the essence
of the shared memory access and the global memory access
of current GPUs. In our previous papers [7], [10], we have
presented efficient algorithms including matrix transpose and



computing the sum and the prefix-sums on the DMM and
the UMM.

a sea of threads a sea of threads

- I I D e ) B B
‘ MMU “ MMU ‘
MB MB MB MB MB MB MB MB
DMM UMM
------------- address line data line
Figure 1. The architectures of the DMM and the UMM

Offline permutation is a task to move data along a per-
mutation given beforehand. Since it has many applications,
offline permutation is very important. For example, matrix
transpose, which is one of the important permutations, is
frequently used in matrix computation. It is known that the
computation of FFT can be done by multistage network in
which each stage involves permutation [11]. Sorting network
such as bitonic sorting [12], [13] also involves permutation
in each stage. Further, communication on processor networks
such as hypercubes, meshes, and so on can be simulated by
permutation on the shared memory. Thus, parallel algorithms
on processor networks can be simulated on the shared
memory machine by data permutations.

The main contribution of this paper is to present conflict-
free offline permutation algorithm on the DMM and imple-
ment it to run on the shared memory in the GPU. Suppose
that we have two arrays a and b of size n each. Let
P be a permutation of (0,1,...,n — 1). In other words,
P(0),P(1),...,P(n — 1) take distinct integer values in
the range [0,n — 1]. Offline permutation along P is a
task to copy ali] to b[P(i)] for all ¢ (0 < i < n — 1).
The destination-designated (D-designated) algorithm just
performs b[P(i)] < a[i] for all . However, writing operation
to array b may involve bank conflicts. Our idea is to use
two permutations S and D which can be obtained from P.
Using these two permutations our conflict-free permutation
algorithm performs b[D(i)] <« a[S(¢)] for all i. Two per-
mutations S and D are determined so that memory access
operations to arrays b and a have no bank conflict. Two
permutations S and D can be determined using a graph
theoretic result about bipartite graph coloring. This idea
is originally shown in our previous paper [7]. Our main
contribution is to actually implement permutation algorithms
including the destination-designated and our conflict-free
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permutation algorithms on the shared memory of the latest
GPU, NVIDIA GeForce GTX-680.

The experimental results for 1024 float numbers on
NVIDIA GeForce GTX-680 show that a straightforward
permutation algorithm takes 246ns and 877ns for random
permutation and bit-reversal permutation, respectively. Quite
surpassingly, our conflict-free permutation algorithm runs in
165ns for random permutation and bit-reversal permutation
each although it performs more memory access operations. It
follows that our conflict-free permutation is 1.5 times faster
for random permutation and 5.3 times faster for bit-reversal
permutation.

This paper is organized as follows. First, we define the
DMM formally in Section II. In Section III, we define
off-line permutation and show straightforward algorithms.
Section IV shows our conflict-free permutation algorithm
and Section V describes the details of this implementation.
In Section VI, experimental results using GeForce GTX-680
are shown. Section VII offers conclusions.

II. DISCRETE MEMORY MACHINE (DMM)

The main purpose of this section is to define the Discrete
Memory Machine (DMM) introduced in our previous pa-
per [7]. The reader should refer [7] for the details of the
DMM.

Let m[i] (¢ > 0) denote a memory cell of address 7 in
the memory. Let B[j] = {m/[j], m[j +w], m[j + 2w], m[j +
3wl,...} (0 < j < w — 1) denote the j-th bank of the
memory. Clearly, a memory cell m/[i] is in the (¢ mod w)-th
memory bank. Figure 2 illustrates memory banks of DMM
for w = 4. We assume that memory cells in different banks
can be accessed in a time unit, but no two memory cells
in the same bank can be accessed in a time unit. Also, we
assume that [ time units are necessary to complete an access
request and continuous requests are processed in a pipeline
fashion through the MMU. Thus, it takes £+ —1 time units
to complete k£ access requests to a particular bank.

B[0] B[1] B[2] B3]
0 1 2 3
4 5 6 7
8 9 10 || 11
12|13 || 14 ]| 15

memory banks of DMM

Figure 2.  Memory banks for w = 4

Let 7(0),T(1),...,T(p — 1) be p threads. We assume
that p threads are partitioned into £ groups of w threads



called warps. More specifically, p threads are partitioned
into £ warps W(0),W(1), ..., W(£ — 1) such that
WiE)={T( w), T -w+1),...,T((i +1)-w—1)}
(0 <4 < £ —1). Warps are dispatched for memory access in
turn, and w threads in a warp try to access the memory in the
same time. In other words, W (0), W (1),..., W (£ —1) are
dispatched in a round-robin manner if at least one thread in a
warp requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access and is skipped. When W (%) is dispatched, w thread
in W (i) sends memory access requests, one request per
thread, to the memory. We say that the bank conflict occurs
if two or more threads in a warp access to the same bank.
We also assume that a thread cannot send a new memory
access request until the previous memory access request is
completed. Hence, if a thread send a memory access request,
it must wait [ time units to send a new memory access
request.

IIT. OFFLINE PERMUTATION AND CONVENTIONAL
ALGORITHMS

The main purpose of this section is to define offline
permutation and show conventional algorithm for this task.

Suppose that we have two arrays a and b of size n each.
Let P be a permutation of (0,1,...,n— 1). In other words,
P(0), P(1),...,P(n—1) take distinct integer values in the
range [0,n — 1]. Offline permutation along P is a task to
copy afi] to b[P(i)] for all 4 (0 < i <mn—1).

Suppose that we have n threads for the task of offline
permutation. We assume that P(0), P(1),...,P(n—1) are
stored in an array p of size n, such that p[i] = P(i) for all 4
(0<i<n-—1).Let T(i) (0 <i<n—1) denote a thread.
The following algorithm, destination designated permutation
algorithm, performs the offline permutation along P.

[Destination-designated permutation algorithm]
for i« 0ton—1do
T (i) performs b[p[i]] < ali]

Clearly, reading operations from arrays a and p have no
bank conflict. However, writing operation in array b may
have bank conflict.

For example, if P = (0, 4, 8, 12,1, 5, 9, 13, 2, 6, 10, 14,
3, 7,11, 15) and w = 4, then the first warp W (0) performs
writing operation to b[0], b[4], b[8], and b[12] and they are in
the same bank B[0] (Figure 2). Hence, writing operations
by W(0) have bank conflict.

We can avoid writing bank conflict if we use the source-
designated permutation . Let P~! be the inverse of P, that
is, P~Y(P(i)) =i forall i (0 <i < n—1). We assume that
P~Y0),P7(1),...,P71(n — 1) are stored in an array ¢
of size n, such that each q[i] stores P~1(i). The following
algorithm performs the offline permutation along P.

[Source-designated permutation algorithm]
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fori«—0ton—1do
T (i) performs b[i] < alqlé]]

Let us show that this algorithm performs the offline permuta-
tion along P correctly. The goal of the permutation along P
is to satisfy b[P(i)] = a[é] for all ¢ (0 <4 < n — 1). Hence,
it is sufficient to satisfy b[P~1(P(i))] = a[Q(i)] for all i
(0 <i <n—1). From P~Y(P(i)) = i, it is also sufficient
to satisfy b[i] = a[P~1(i)]. Thus, the source-designated per-
mutation algorithm performs the offline permutation along
P correctly.

It should be clear that writing operations in b and reading
operations from ¢ have no bank conflict. However, reading
operations from a may have bank conflict. For example,
for P defined above, we have P = P—!. Hence, reading
operations has always bank conflicts.

We will show that, bank conflict-free permutation is pos-
sible if we use two arrays s and d determined from P appro-
priately. Let S and D be permutations over (0,1,...,n—1).
Suppose that S~1(D(i)) = P(i) for all i (0 <i <n — 1),
where S~1 denotes the inverse of S. Let s and d be arrays
of size n storing the values of S and D respectively. The
following algorithm performs permutation along P:

[Conflict-free permutation algorithm]
fori < 0ton—1do
T(z) performs b[d[i]] < a[s[i]]

Let us see the correctness of the algorithm. When the
algorithm terminates, b[D(¢)] is storing a[S(7)] for all ¢
(0 <4 < n—1). In other words, b[S~(D(i))] is storing
a[S~Y(S(i))] for all i. Thus, b[P(i)] = al[i] is satisfied and
permutation along P is performed correctly.

Clearly, reading operations for array s and d are conflict-
free. However, access to arrays a and b may have bank
conflicts. If we define S and D appropriately, access to
arrays s and d can be conflict-free. Let P be a per-
mutation defined above. We define S and D as fol-
lows: S = (0,5,10,15,1,6,11,12,2,7,8,13,3,4,9, 14)
and D = (0,5,10,15,4,9,14,3,8,13,2,7,12,1,6, 11). For
such S, we have S~ = (0,4,8,12,13,1,5,9, 10,14, 2,6,
7,11,15,3). Hence, S~ - D = (0,4,8,12,1,5,9,13,2,6,
10,14,3,7, 11,15) = P. Thus, our conflict-free permu-
tation algorithm using S and D are executed, permuta-
tion along P can be completed. Also, reading operations
from a and writing operations from b are conflict-free.
For example, warp W (1) reads from a[l], a[6], a[11], a[12]
which are in banks BI1], B[2], B[3], B[0], respectively. It
also writes in b[4],b[9],b[14],b[3] which are in banks
B[0], B[1], B[2], B[3], respectively.

Let us evaluate the computing time of our conflict-free
permutation algorithm. We assume that n threads are used
to permute an array of size m. Since we have * warps of
w threads each and reading from array s involve no bank
conflict, reading from array s takes O(; 4+ [) time units.



Similarly, reading from array a and d, and writing in array
b also take O(:* + 1) time units. On the other hand, in the
worst case, the destination-designated and source-designated
permutation algorithms take O(n + [) time units if memory
access by a warp is performed to the same bank.

IV. GRAPH COLORING BASED CONFLICT-FREE
PERMUTATION

This section is devoted to show how S and D are deter-
mined from P to guarantee that the conflict-free permutation
using S and D involves no bank conflict. The same idea is
used in our previous paper [7].

We use an important graph theoretic result [14], [15] as
follows:

Theorem 1 (Konig): A regular bipartite graph with degree

p is p-edge-colorable.
Figure 3 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Each edge is painted by
4 colors such that no node is connected to edges with the
same color. In other words, no two edges with the same
color share a node. The readers should refer to [14], [15]
for the proof of Theorem 1.

Figure 3. A regular bipartite graph with degree 4
Suppose that a permutation P of (0,1,...,n—1) is given.
We draw a bipartite graph G = (U, V, E) of P as follows:
o U ={B[0], B[1], B[2],...,Blw—1]} is a set of nodes
each of which corresponds to a bank of a.
« V ={B[0],B[1],B[2],..., Blw—1]} is a set of nodes
each of which corresponds to a bank of b.
 For each pair source a[i] and destination b[P(i)], E
has a corresponding edge connecting B[i mod w](€ U)
and B[P(i) mod w](€ V).
Clearly, an edge (B[u], B[v]) (0 < u,v < w—1) corresponds
to a word of data to be copied from bank B[u] of a to
Blv] of b. Also, G = (U, V, E) is a regular bipartite graph
with degree 2. Hence, G is %-colorable from Theorem 1.
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Suppose that all of the n edges in F are painted by ;> colors
o,1,... %—1. We determine value ¢; ; (0 <@ < %—1,0 <
Jj<w—1,0 <¢; <n—1)such that an edge (B[c; ; mod
w], B[P(c; ;) mod w]) with color ¢ corresponds to a pair of
source alc; ;] and destination b[P(c; ;)]. It should have no
difficulty to confirm that, for each ¢,

e w banks Ble; o mod w], Ble;1 mod w],

Blc; -1 mod w] are distinct, and
o w banks B[P(c;() mod w|, B[P(c;1)mod w], ...
B[P(¢;,w—1) mod w] are distinct.
Thus, we have the following important lemma:

Lemma 2: Let ¢; ; (0 < i < %—1,0§j§w—1,0§
¢;,; < n — 1) denote a source defined above. For each ¢,
we have, (1) alc; o], alcia], ..., alciw—1] are in different
banks, and (2) b[P(c;0)], b[P(ci1)], - b[P(¢iw—1)] are
in different banks.

We define permutation S and D using c; ; as follows:

S -w+ )
D(i -w+j)

Ciyj
P(cij)

Suppose that the conflict-free permutation algorithm using
S and D above is executed. Since the copy operation is per-
formed from a[c; ;| to b[P(c; ;)], the permutation along P is
completed correctly. Also, each warp W (i) (0 <i < & —1)
performs copy operation from a[c; ], alcial, - - -, alciw—1]
to b[P(ci0)], b[P(¢ci1)];-- -, b[P(Ciw—1)]. From Lemma 2,
reading from a and writing in b by warp W (i) are conflict-
free.

V. IMPLEMENTATION OF CONFLICT-FREE PERMUTATION
ALGORITHM

The main purpose of this section is to show our imple-
mentation of conflict-free permutation algorithm to the GPU
using CUDA.

A permutation P of (0,1,...,n—1) is given as an input.
We first draw a bipartite graph G = (U, V, E) of P shown
in previous section and find an edge coloring. Recall that
edges are painted by ; colors so that no two edge with the
same color shares a node. Clearly, the edge coloring can
be done by repeating a bipartite graph matching - times.
Also, it is known that a maximal bipartite graph matching,
which is a subset of edges sharing no node, can be found
in polynomial time.

For the reader’s benefits, we briefly explain how a bipartite
graph matching can be found. Let G = (U,V,FE) be a
bipartite graph and M (C E) is a matching. Note that
M may not be a maximal. A path A of G is called an
augmenting path if

« two terminals of A are not connected to M, and

o edges of M and F — M appear alternatively in A.
Figure 4 shows examples of augmenting paths.

Clearly, the first and the last edges are in &Z — M. Also,
in an augmenting path A, the number of edges of £ — M
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Figure 5. The resulting bipartite matchings after flipping operation

is exactly one larger than that of M. In other words, |A N
(E—M)|=|AN M|+ 1 holds.

Let us consider the flipping operation for an augmenting
path as follows:

o M — M — (AN M), that is, remove edges in AN M
from M.
o M — MU(AN(E — M)), that is add edges in AN
(F—M) to A.
The reader should refer to Figure 5 for illustrating the
resulting bipartite matchings after the flipping operation.
Clearly, the resulting M is a matching and the number of
edges in M increases by one.

An augmenting path can be found in polynomial time if
it exists. Pick a node connected to no edge in M. Construct
a shortest path tree from the picked node such that, in all
paths from the root (or the picked node) to the leaves, edges
E — M and M appears alternatively. If we can find a non-
root node connected to no edge in M, then the path from
the root to the non-root node is an augmenting path.

From these observation, we can find a maximal matching
of a bipartite graph G as follows. Initially, let M = (). Find
an augmenting path with respect to G and M and performs
flipping operation. This task is repeated until we can find
no augmenting path with respect to G and M. The resulting
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matching M is a maximal matching. If the graph is a regular
bipartite graph, M is also a maximum matching. For graph
coloring, we repeat finding the maximum matching. First,
find the maximum matching M, paint edges in M with color
0, and remove edges in M from G. In this way, we can find
a bipartite graph coloring in polynomial time.

Note that, we perform a bipartite graph coloring in offline.
So, it is not necessary to find a bipartite graph coloring using
a GPU. Actually, we have implemented a bipartite graph
coloring to run on a convectional Linux PC.

We have implemented permutation algorithms using
CUDA. Arrays a and b are defined as arrays of n float
numbers in the shared memory of the GPU and arrays p,
q, s, and d are defined arrays of n int numbers in the shared
memory as follows:

__shared__ float a[n], b[n];
__shared__ int p[n], g[n], s[n], d[n];

Also, three permutation algorithms are implemented by
CUDA device functions as follows:

[Destination-designated permutation algorithm]

_ _device_ _ d-designated(float *a, float *b, int *p){
b[p[threadldx.x]]=a[threadldx.x];

}

[Source-designated permutation algorithm]

_ _device_ _ s-designated(float *a, float *b, int *q){
b[threadldx.x]=a[q[threadldx.x]];

}

[Conflict-free permutation algorithm]

__device_ _ conflict-free(float *a, float *b, int *s, int *d){
b[d[threadldx.x]]=a[s[threadldx.x]];

}

The above codes are executed by every thread with a unique
ID represented by threadldx.x such that threadldx.x = ¢ for
(7).

To reveal the overhead of permutation, we also use a
simple copy CUDA device function as follows:

[Copy algorithm]
_ _device__ copy(float *a, float *b){
b[threadldx.x]=a[threadldx.x];

}

In other words, the copy algorithm performs identical per-
mutation such that P (i) = i for all 4.

Table I summarizes memory access operations performed
by the algorithms. For example, the destination-designated
permutation algorithm performs read operations for arrays a
and p, and write operations for array b. Hence, it performs
2n +n = 3n memory access operations. Our conflict-
free permutation algorithm performs 4n memory access
operations. Thus, if each memory access operation have the



Table I
MEMORY ACCESS BY EACH ALGORITHM

Algorithms a| b |p|q]|s|d]| read | write
Copy r|w n n
D-designated r|w|r 2n n
S-designated r|w r 2n n
Our conflict-free | r | w r|r 3n n

same access time, the conflict-free permutation algorithm
is 3—2 = % times slower than the D-designated and S-
designated permutation algorithms. However, as we are go-
ing to show in the next section, our conflict-free permutation
algorithm can be much faster than the destination-designated
and source-designated permutation algorithms.

VI. EXPERIMENTAL RESULTS

This section is devoted to show the experimental results
using GeForce GTX-680. To evaluate the performance
of permutation algorithms We use several widely-used
important permutations as follows:

Identical: Permutation such that P(:) = ¢ for every i.
Random: One of all the possible n! permutations is selected
uniformly at random.

Transpose: Suppose that a and b are matrix with
dimension x w. Transpose corresponds to the data
movement such that a is read in row-major order and b is
written in column-major order as illustrated in Figure 6.
That is, P(i - w + j) J - & 4 for every i and j
0<i< 2 -1,0<j<w-1).

Shuffle: Let 4,,%,,—1---i1 be the binary representation of
i. Shuffle permutation is defined by P(imim—1---91) =
Im—1--t10m. Shuffle permutation is widely used for
shuffle exchanging in sorting networks [12], [13].
Bit-reversal:  Shuffle permutation is defined by
P(imim—1-"-9) = i1+ im—1im. Bit-reversal is used for
data reordering in the FFT algorithms [11].

n

0 213(4(5]617 014 12116 |20 |24 |28
9 [10(11(12(13|14]|15 115 13117 (21 |25 |29
16117118 (19(20(21|22|23 - 2161|1014 |18 (22 (26 (30
24125126127 (28(29(30|31 317 |1115(19 (23 (27|31
a b
Figure 6. Transpose permutation

We have evaluated the performance three permutation
algorithms, the destination-designated permutation algorithm
(D-designated), the source-designated permutation algorithm
(S-designated), and our conflict-free permutation algorithm
(conflict-free). Also, to estimate the overhead of these three
permutation algorithms, we have evaluated the performance
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of the copy algorithm. Since any permutation algorithm
cannot be faster than the copy algorithm, its computing time
is the lower bound of that for any permutation algorithm.

The performance has been evaluated for n = 1024
using NVIDIA GeForce GTX-680. A CUDA kernel with a
single block of 1024 threads is called from the host. The
1024 threads executes one of the four device functions,
D-designated, S-designated, conflict-free, and copy. Note
that the number w of memory banks is 32. For Transpose
and Bit-reversal permutations, wiring operation by the D-
designated and S-designated algorithms involves many bank
conflicts in the sense that most of threads in a warp writing
in the same bank. Table II shows the executing time for
an array of size n 1024. Since the executing time of
each algorithm is too short to measure, each algorithm has
been executed for each permutation 1 million times and took
its average. Table II also shows the ratio of the execution
time with respect to that of the simple copy. Note that, any
permutation algorithm cannot be faster than the simple copy.
Thus, the ratio in the table clarifies the overhead of each
permutation algorithm.

According to the table, for Identical and Shuffle permu-
tations that rarely involve bank conflicts, the D-designated
and S-designated algorithms run faster than our conflict-
free algorithm because extra memory access operations
are necessary for the conflict-free algorithm as shown in
Table I. The executing time of the S-designated algorithm for
Shuffle permutation is longer than that of the D-designated
algorithm since the number of bank conflict increases. On
the other hand, for Random, Transpose, and Bit-reversal
permutations, whose number of bank conflicts is not small,
our conflict-free permutation algorithm runs faster than the
others though extra memory access is necessary since all
the memory access can avoid bank conflict. For Transpose
and Bit-reversal permutations, our conflict-free permutation
algorithm attains a speedup factor of more than 5 over
the others. That is, our conflict-free permutation algorithm
is efficient for permutations that frequently involve bank
conflict. Also, the execution time of our conflict-free is
almost constant for all permutations.

In applications using the GPU, the permutation algorithm
is often executed for multiple arrays in parallel. Therefore,
we have also evaluated the performance of the permutation
algorithms if they executed for multiple arrays of size 1024.
More specifically, a kernel call of CUDA generates multiple
blocks, each of which executes a permutation algorithm
for an array of size 1024 in parallel. Figure 7 shows the
executing time for multiple arrays of size 1024. From the
figure, when the number of arrays is less than or equal to
8, the executing time is almost the same. In other words,
at most 8 CUDA blocks executing a permutation algorithm
run in the same time. Further, if a kernel call generates
8k (k > 1) CUDA blocks, the execution time is almost
proportional to k. These facts make sense because GTX-680



THE EXECUTING TIME AND THE RATIO WITH RESPECT TO THE COPY FOR AN ARRAY OF SIZE n = 1024.

Table II

Algorithms

Permutations

D-designated

S-designated

Conflict-free

Copy

Identical 135.366ns/1.315 | 123.637ns/1.201 | 165.180ns/1.605
Random 246.918ns/2.390 | 265.786ns/2.582 | 164.544ns/1.598
Transpose 876.329ns/8.513 | 891.006ns/8.656 | 164.851ns/1.601
Shuffle 136.073ns/1.322 | 183.192ns/1.780 | 164.773ns/1.601
Bit-reversal | 876.891ns/8.519 | 891.390ns/8.660 | 164.764ns/1.601

102.937/1.000

has a GPU with 8 multicore processors work in parallel.

Time[ns]
100000
=&-D-designated (Bit-reversal)
—&— D-designated (Random)
-+ Conflict-free (Bit-reversal)
=0 -Conflict-free (Random)
10000
=o -Copy
1000 = — — —
.2
e ‘(' .
LT EEE LT S e
o gm e % .
100 mrm e O
1 2 4 8 16 32 64 128 256 512 1024
The number of arrays
Figure 7. The executing time to permute arrays of 1024 elements.

VII. CONCLUSION

The main contribution of this paper is to implement
several permutation algorithm including the straightforward
and our conflict-free permutation algorithm on the shared
memory of NVIDIA GeForce GTX-680 The experimental
results for 1024 float numbers on NVIDIA GeForce GTX-
680 show that a straightforward permutation algorithm takes
246ns for the random permutation and 877ns for the worst
permutation that involves many bank conflicts. Our conflict-
free permutation algorithm runs in approximately 165ns
for any permutation including the random permutation and
the worst permutation, although it performs more memory
accesses.
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Protocol 1 EngyEff(A)

Constants:
1: T : convergence time of A
2: T" = 3n : convergence time of constructST
3: T*  max{T,T'};
4t n+T%
Internal Variables:
5: pif_error : Boolean
Output Variables:
6: clock, : {0,...,t+2n 3}
7 statejj‘
8: stated” = (root,, prnt,, dist,, size,, mofp,, Child,)
Actions:
9: if clock, < t then // ordinary mode
10:  Broadcast(id,, clock,state?, statesT);
11: M,  received messages;
12:  clock, min({m.clock|m € M,} U {clock,}) + 1;
13:  state?d  executeA(statel, M,);
14:  stateST  constructST(stateST, M,);
15: else // sleep mode
16:  if clock, =t then // check the consistensy for the protocol A

17: Broadcast(id,, clock,, state, stateST);
18: M,  received messages;

19: state?  evecuteA(state?, M,);

20: statedT  constructST(stateST, M,);
21:  end if

// check the consistency for the clock synchronization by PIF
22:  if clock, =[t+1,...,t+n 2] then

23: pif_error  propagation(clock,, statefT, M,);
24:  elseif clock, =[t+n 1,...,t+2n 3] then
25: pif_error  feedback(clock,, stateS™ , M,);

26: end if

// update the value of clock
27:  if pif_error = false or state!* changed or stateS” changed or 3m € M, [m.clock # clock,] then

28: clock, 0

29: else

30: clock,  (clock, t+1)mod (2n 2)+t;
31:  end if

32: end if

Function 2 propagation(clock,,, stateS™, M,)

Actions:
1: if clock, t = dist, then

2. Broadcast(id,, clock,state’, stateST);

3: else if clock, t+ 1 = dist, then

4: M,  received mesasges;

5. if Vm € M, [m.id # stateS” .prnt] then
6: return false;

7. end if

8 stateST  constructST(statesT, M,);

9: end if

10: return true;
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Function 3 feedback(clock,, stateST, M,)

Internal Variables: mofp: message sent from parent;
Actions:

1:

12:
13:

if 2n 2+t clock, = dist, then

Broadcast(id,, clock,state?, statesT);
elseif 2n 3+t clock, = dist, then
M,  received mesasges;
if {m € M,|m.stateST prnt = state5T id} # statedT.Child then
return false;
end if
stateST  constructST(stateST, M,);
if dist, = 0 and size, # n then
pif_error  true;
end if
end if

return true;

Function 4 constructST(stateST, M,)

Actions:
1. root,  max({m.rootjm € M,, m.dist n 2} U{id,});
2: if root, = id, then
3 prnt, L
4 dist,  0;
5: else
6:  mofp m s.t. m.dist = min{m'.dist|m’ € M,, m’.root = root, };
7. prnt, mofp.id,;
8  dist, mofp.dist+1;
9: end if

10:
11:
12:

Child, {m.idlm € M,,m.prnt = id,};
size, ZuGChild,, size, + 1;
return(root,, prnt,, dist,, size,, mofp,, Child,);
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Abstract. Probabilistic self-stabilizing systems guarantees that any execution eventually reaches a
legitimate execution with probability 1. Unlike self-stabilizing systems, probabilistic self-stabilizing
systems are easy to design, and indeed any weak stabilizing system can be automatically transformed
into a probabilistically stabilizing system by randomizing the algorithm and/or by modeling a scheduler
as a stochastic process, provided that the number of configurations is finite. Since the scheduler is
an abstraction of the environment that we cannot control, we cannot choose a favorite probability
distribution the scheduler obeys. But we can choose a one for the algorithm. In this paper, we address
the problem of designing a good probability distribution for a given algorithm so that the randomized
weak stabilizing system under a given probabilistic scheduler can exhibit a good convergence time.
Specifically, for some wide and natural classes of probabilistic schedulers, we characterize the class of
algorithms for which we can choose a probability distribution such that the corresponding convergence
time becomes finite. We also extend this result to the case in which the number of configurations is
infinite.

1 Introduction

Modern distributed systems and networks require that resilience to faults and attacks is considered at a
very early stage of algorithm design. The paradigm of self-stabilization [9, 10,30] yields a unified approach
for recovering any kind of transient fault or attack, and is oblivious of their cause or extent. Intuitively, a
self-stabilizing system recovers correct behavior in finite (and bounded) time after being started from an
arbitrary global state. Quantifying the time needed to recover (that is, the convergence time) is the main
complexity measure of self-stabilizing systems.

Amongst system hypotheses that are made by self-stabilizing distributed systems, the notion of a scheduler
(or daemon [14]) is one of the most complex, as it captures the various options for selecting processes for
execution. A scheduler is essentially a predicate on possible schedules (in each configuration, it schedules
a set of processes for executing their algorithm code) and is often seen as an adversary by the protocol:
the less restrictive the scheduler is, the more possibilities are offered to lengthen the convergence time, and
sometimes preventing stabilization altogether by making the convergence time being infinite.

As various impossibility and complexity issues occur when deterministic self-stabilization is considered.
They are also difficult to design and prove their correctness. Weaker notions of self-stabilization were pro-
posed [30]. Pseudo stabilization [5] guarantees that every execution has a suffix that satisfies the problem
specification, yet the time needed before reaching this suffix is unbounded. Practical Stabilization [13] loosens
the requirement that after recovery, the system is always correct; instead, it remains correct for a practically
infinite time (i.e. the time to increase a counter from 0 to 2128). Probabilistic Stabilization [22] only guaran-
tees that correct behavior is recovered in bounded time with probability 1 (the expected convergence time is
finite). Loose stabilization [29] has a short (polynomial) expected convergence time and a long (exponential)
stabilized phase afterwards. Weak Stabilization [19] does not guarantee that every execution proposed by the
scheduler recovers a correct behavior. Instead, starting from any arbitrary initial state, at least one execution
in the scheduler’s set recovers a correct behavior.

* Corresponding author. Address: 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Fax: +81-92-802-3637. Email:
yamauchi@inf .kyushu-u.ac. jp
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The fundamental significance of weak stabilization was recently outlined [8]. First, there exists a trans-

formation from a weak-stabilizing system under the fair deterministic scheduler to a probabilistic stabilizing
system under the uniform probabilistic scheduler (that selects each process with probability 1/2 in each con-
figuration). Also, uniform randomization of a deterministic algorithm translates a weak-stabilizing system
under the fair deterministic scheduler to a probabilistically stabilizing system under the synchronous sched-
uler (that selects all processes in each configuration). This second transformation uses a simple probability
distribution to randomize an algorithm: when scheduled, a process simply tosses a coin to choose whether
it should execute its (deterministic) algorithm. Of course, these transformations can also be used for more
elaborate cases, where the scheduler is not uniform probability distribution, the algorithm is not uniformly
randomized, or the combination of them. A natural question raised by this work is the interdependency
between the (possibly) biased choices of the scheduler and the (possibly) biased choices of the algorithm
with respect to the expected convergence time. For a given probabilistic bias of the scheduler, can we derive
a counter-measure bias for the algorithm ? What is the worst possible scheduler bias for an algorithm to
cope with ?
Our Contribution. We investigate the transformation of weak stabilizing system into probabilistically
stabilizing ones, with an emphasis on the expected performance (that is, convergence time) of the transfor-
mation result. We assume that the randomization of a weak-stabilizing algorithm is modeled by a probability
distribution over the original transitions, and we consider probabilistic scheduler that are defined by a set
of finite state Markov chains. We also assume that a scheduler is an abstraction of the environment outside
the system and once an execution starts, a scheduler does not know the configuration of the system. Our
performance criteria is the expected convergence time, that is, the expected number of steps from the worst
possible initial configuration to a legitimate configuration (i.e. a configuration from which every further
execution is correct).

In more details, let 7p o be the expected convergence time of a probabilistically stabilizing system with
probability distribution D of the algorithm and probabilistic scheduler instance M. We show a necessary
and sufficient condition for a finite system to have 7p aq < 0o. A system is finite if its set of configurations
is finite. Our condition is that the transition diagram of a system satisfies a regularity property, which is
newly introduced in this paper. Then, we give a necessary and sufficient condition for an infinite system to
have a finite expected convergence time. This second condition has impact on translation techniques that
also promise finite expected convergence time for infinite systems, as previous work [8] only investigated the
case of finite systems.

Related Works. Randomized self-stabilizing algorithms are often used for symmetry breaking [22, 24, 20,
21, 26,4, 25, 6] or reducing space complexity of particular problems [23,1, 2].

Most of the theoretical papers that investigate probabilistically stabilizing algorithms consider scheduler
that are adaptive, that is, they may choose processes that are scheduled for execution based on the current
global state of the system (and possibly its history in the current execution). This scheme was popularized by
the scheduler-luck game paradigm [12]: the luck is the randomization of the algorithm, and the game consists
in alternating (possibly non-deterministic yet not necessarily probabilistically) choices of the scheduler and
random tosses by the algorithm. In this context, expected convergence time was investigated using hitting
time of Markov chains [16], coupling technique of Markov chains [18], or Markov decision processes [3]. The
adaptivity of the scheduler makes it extremely powerful, and permit to derive worst case theoretical upper
bounds on the convergence time.

However, such strong schedulers are arguably relevant from a practical standpoint. Schedulers are sup-
posed to model the amount of “asynchrony” in the system, and in real networks with actual hardware, the
clock rates of machines and the properties of the communication media yield a probability distribution that
can be obtained by statistical observation of various parameters in the network. To our knowledge, every
previous implementation of self-stabilizing protocols in a simulator software [17,28,31,27] (that require to
implement the scheduler) assumed the scheduler was following a probability distribution that did not depend
on the current state or history of the execution. Of course, all general network simulators do not implement
the notion of an “adaptive” scheduler either. Although the non-adaptive scheduler is simpler to cope with
(and thus less powerful), the obtained convergence time complexity is more likely to match the actual perfor-
mance of real systems. Uniform probabilistic schedulers such as those appearing in [11, 15, 8] permit to use
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a Markov chain to represent the probabilistic behavior of schedulers and randomized algorithms altogether:
an execution of such a probabilistic system corresponds to a random walk on the transition diagram of the
system. Our notion of (possibly non-uniform) probabilistic scheduler naturally extends the previous uniform
notion, as such a distribution can be obtained in practise by observing an actual network a sufficiently long
time so that the obtained data is statistically meaningful.

Outline. In Section 2, we present the system model and give the formal definitions of our refinements
related to probabilistic stabilization. We then show a necessary and sufficient condition for obtaining finite
convergence time under probabilistic schedulers. The case of finite systems is presented in Section 3 and that
of infinite systems in Section 4. Section 5 outlines concluding remarks and open questions.

2 Preliminary

A distributed system is defined by a pair (IV,.A) of a communication graph N and a distributed algorithm
A. A communication graph N = (P, L) is a directed graph where P (|P| = n) is the set of processes and L
(IL| = m) is the set of communication links. An algorithm A = {A, : p € P} is a set of local algorithms A,
at each process p € P. Each process p € P is a state machine that maintains local variables. When an edge
(p,q) is in L, process p can read the local variables of g. We call ¢ a predecessor of p and we denote by N,
the set of all predecessors of p. Note that each process p can read and write to its local variables.

A state of process p € P is an assignment of a value to each of its local variable drawn from its specified
domain. Let I}, be the set of all states of p. A configuration is a set of states of all processes. The set of all
configurations is I' = Hpe pIp. We say that a distributed system is finite if I" is finite, and infinite if I" is
countably infinite.

A deterministic algorithm A, is described by a sequence of guarded commands (guard) — (command).
A (guard) is a predicate over the state of p and its neighboring processes, and (command) is a statement
that changes the values of local variables of p. In a configuration v € I', a guarded command is enabled if
its guard is satisfied, and p is enabled when at least one of the guards is satisfied. If p is enabled in v, and a
scheduler, which we will define later, activates p, one of the commands corresponding to enabled guards is
executed. When more than one guard is enabled in v, the command corresponding to the first (in the order
of A) guard command enabled is executed when the process is activated.

A scheduler is an abstraction of the environment and specifies which process it allows to execute at a
given time. The deterministic scheduler is a set of infinite sequences of a subset of P.?> We denote by o the
(strongly) fair scheduler, which is the set of all (strongly) fair sequences, i.e., every process appears infinitely
many times in every sequence in or. The synchronous scheduler og always activates P. The central scheduler
oc contains all fair sequences consisting of process sets of size 1.

An ezecution of a distributed system under scheduler o is a sequence of configurations & = o, 71, . . . that
is defined as follows: Scheduler o first non-deterministically selects a sequence Z = Zy, Z1, Zs, ... in 0. For
any t > 0, let X; C P be the set of enabled processes in ;. Then the processes in X; N Z; are activated in
configuration ;. If the algorithm is deterministic, each of the activated processes executes its first guarded
command enabled, and their executions yield the next configuration ;1.

The transition diagram of a distributed system (N,.A), is a labeled directed graph S = (I', T, \) where
the set of directed edges T is the set of transitions defined over I' by A. Each directed edge (v,7') € T is
labeled with A(v,~") C P that represents the set of processes which update their states in the transition from
~ to /. From the definition of the order on guarded commands, for any configuration ~y, no two transitions
have the same label and if A(v,v") # A(7y,7”), then ' # 4. We use S to denote the distributed system and
its transition diagram.

3 In the literature, the output of a scheduler is assumed to be a subset of the enabled processes. We simply assume
that the output is a subset of P, to make the behavior of the scheduler (the environment) more independent
of a particular distributed system under consideration. However, whether it is a correct formulation or not is
controversial. Another formulation defines a scheduler as a predicate. We do not take this formulation, since we
need to specify detailed properties of instances of a scheduler
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Since we cannot control the environment, we consider a scheduler as an adversary and conduct a worst

case analysis, assuming that the adversary does not know the results of probabilistic choices at processes
a-priori.
Randomized Algorithm. A randomized algorithm is a pair (A, D) where A is a deterministic algorithm
and D = {D,, : p € P} is a set of probability for the execution of A. Like a deterministic algorithm, each
algorithm A, at p € P is a sequence of guarded commands, but the command executed when it is activated
is determined probabilistically in the following way: When Z is the set of guards enabled at p in v, then A4,
is associated with a probability DPZ . When p is activated by the scheduler, z € Z is chosen for execution with
probability Df (z), where a special symbol L means no guarded command, i.e., Dg (L) is the probability that
no guarded command is executed even if p is enabled in ~. Df may depend on local information available
for p, i.e., the current states of p and its predecessors N,. For simplicity, we omit Z from Dg and denote it
by D,, whenever it is obvious from the context. However, in this paper, we restrict ourselves to consider a
rather restrictive class of pure probability distribution, because of the reason we will state later.

A probability distribution D is pure if for any p and Z, Df (z) > 0 only if z is either the first guarded
command enabled in A, or L. We denote by D; a pure probability distribution that assigns probability 1 —¢
(0<0<1)to Df (L). For example, D, o allows each process p execute A, with probability 1/2 and ignore
the activation with probability 1/2.

For any execution £ = 7g,71,..., each process activated in - first chooses a guarded command at
random with the probability D from the enabled ones, and it activates it. Then like the case of deterministic
algorithm, their executions yield a system transition from v to yy1.

The transition diagram of (A, D) is defined by a transition diagram and transition probability of each

edge. We denoted this diagram by Sp. When D is pure probability distribution, the transition graph of Sp
is identical to S.
Probabilistic Scheduler. Let us fix a process set P. A Markov chain M over a labeled directed graph
H = (£2, A, 1) with an edge labeling function u from A to 27 and a transition probability P = (Pi,j),u6,5))
is called a probabilistic scheduler instance, if it satisfies that, for any ¢ € {2, (1) there is a j € 2 such
that Py jy ua;) > 0 and p(i,j) # 0, and (2) u(i,j) # p(i,j) for any edges (i,7) and (i,;'). Intuitively,
an edge (i,7) has a label X means that if the scheduler is at ¢, then with probability P jy,u(i,5), it allows
to activate each of the processes in u(i,j) € P (if it is enabled). The first requirement thus states that
every probabilistic scheduler instance always allows to activate some process with a positive probability. A
probabilistic scheduler for P is a set of probabilistic scheduler instances for P. In the following, whenever it
is obvious from the context, we use M instead of M = (H, P).

A probabilistic scheduler instance is finite, if its state space is finite. We denote the set of all finite
probabilistic scheduler instances by pg, and call it simply the finite probabilistic scheduler. In this paper,
we are particularly interested in the following three subclasses of pp. In a central probabilistic scheduler
instance, an edge (¢,j) € E with P, ; > 0 is associated only with a singleton X. A probabilistic scheduler
instance is said to be oblivious (i.e., memory-less) if 2 is a singleton. The central probabilistic scheduler
denoted by p¢ is the set of all central probabilistic scheduler instances, the oblivious probabilistic scheduler
denoted by po is the set of all oblivious probabilistic scheduler instances, and by poc we denote the set of all
oblivious and central probabilistic scheduler instances.* By definition, poc C po C pr, and poc C pc C pr-

Like a deterministic scheduler, we also regard a probabilistic scheduler as an adversary and conduct a
worst case analysis, i.e., it selects the worst probabilistic scheduler instance and the worst initial state for
the given algorithm, but when the algorithm is randomized, we assume that the adversary does not know
a-priori the results of the probabilistic choices in the processes.

Self-stabilization. A specification for a distributed system is a predicate defined over its executions.
Consider a distributed system S executing an algorithm A on a communication graph N = (P, L) under
a scheduler o, and let SP be the specification for S. We say that S is self-stabilizing for SP under o,
if any execution under ¢ contains a legitimate configuration, where a configuration is legitimate under o,
if any execution under o starting from the configuration satisfies SP. We denote the set of legitimate

4 An important subclass of poc is the uniform central scheduler pyc, which assigns the same probability 1/|P]| to
each {p} (p € P).
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configurations by I'r,. We say that S is weak stabilizing for SP under o, if any configuration v has at least
one execution starting from ~ under o that reaches a legitimate configuration. We say that a (possibly
randomized) distributed system is probabilistically stabilizing for SP under (possibly probabilistic) scheduler
o, if any execution under ¢ reaches a legitimate configuration with probability 1.°

The performance of a self-stabilizing system is measured by the convergence time, which is the maximum
number of time steps of any execution to a legitimate configuration. In the case of the probabilistic self-
stabilization, we take the expectation of the convergence time.

In [8], it is shown that a distributed system S = (N, A) for a specification SP under op is weak stabilizing,
if and only if the corresponding randomized system S = (N, .A ) is probabilistic self-stabilizing for SP under
og, where A = (A, D;/3). We can indeed choose any 0 < § < 1 for D;. But this property does not hold for
an “impure” probability distribution (not only under synchronous but also under a probabilistic scheduler),
which is the reason we concentrate on pure probability distributions. Our motivation is to design a good
probabilistic self-stabilizing algorithm from a weak stabilizing algorithm.

3 Finite Expected Convergence Times for Finite Systems

A probabilistic self-stabilizing system is useless if the expected convergence time is not bounded by a constant.
This section investigates a necessary and sufficient condition for a weak stabilizing algorithm A to have a
finite expected convergence time when A is suitably randomized by associating a pure probability distribution
D, for each classes of probabilistic schedulers poc, po, pc and pp.

Let A be a weak stabilizing algorithm under o for a specification SP. Let M be a probabilistic scheduler
instance in p. For any distributed system S = (N, (A,D)) under M, let 7p am(Y0,wo) be the expected
convergence time to a legitimate configuration when the initial configuration of S is vg € I" and the initial
state of M is wqg € 2. Let

o,.Mm(Y0) = max 7, Mm (70, wo),

and

= ma. .
DM = Max 7o, M(70)

Recall that p is an adversary and must select the worst probabilistic scheduler instance M and the worst
initial state wy € £2. Then we want to know

T = minmaxTp aq-
D Mep

We denote by D = argmingy maxae, Tp-

When D and M are given, we can compute 7p aq as follows: Since I' and {2 are finite, we compute
To,M (70, wo) for each v € I and wy € £2.

To this end, consider the direct product of two Markov chains Sp and M, i.e., Markov chain Sﬁ”‘, whose
state spaces is I' x 2. Its transition probability from (v,w) to (7/,w’) is obviously computable. Then we
contract all states (7,w) such that v € I';, into a newly introduced state ~, (which represents all legitimate
configurations), and calculate the hitting time from (o, wo) to vz. This Markov chain (with labeling ) is
denoted by G, and G = (V, E) denotes its transition graph. We make use of Sg‘ as well as G in the following.

The hitting time HT; ; of a Markov chain is the number of steps that a stochastic process starting from
state ¢ takes until it reaches state j for the first time; HT; ; = min{t > 0 : X; = j| X = i}. The mean hitting
time htiJ is E[HT‘ZJ]

5 Let £ =0,71,...,7 be a finite execution. Intuitively, the probability of a finite execution is the product of the
probability p; i1 for e =0,1,...,k — 1, where p; ;41 is the probability that v;41 is reached provided +;, which also
depends on the probabilistic scheduler instance and its current state (see Section 3 for detailed argument). Now
using the set of all the finite executions as the sample space, we can define a probability model for this purpose.
See e.g., [3] for the formal definition of the probability model.
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3.1 7* under poc

Let S = (N,.A) be a weak stabilizing system for a specification SP under or. We show a necessary and
sufficient condition for a randomized system Sp = (N, (A, D)) to have a bounded worst case expected
convergence time 7 (< 0o) for some pure probability distribution D.

For the transition diagram S = (I, T, \), we contract all legitimate configurations to a newly introduced
configuration . Let S be the obtained transition diagram. For process p € P, let fp be the set of edges

labeled with {p}, and S, = (I',T},).

Definition 1. A transition diagram S = (I, T, \) satisfies the reqularity condition if §p is a rooted in-tree
rooted at yg, for anyp € P.

In this section, we show that the regularity is a necessary and sufficient condition for 7 < oo under poc.
Theorem 1. S satisfies the reqularity condition if and only if T < oo under poc-

Since D is pure, the transition diagram of a distributed system (N, (A, D)) is the same as the transition
diagram of S, except that each directed edge is associated with a probability. Let us construct a Markov
chain Sp! for any probabilistic scheduler instance M € poc. Since (2 is a singleton, the transition graph of
S{;" is isomorphic to that of S, except the difference of the transition probability matrix. Recall that each
of its edges (4, j) of S has a label A(4, j) C P, as well as a probability P, ;.

Let G = (V, E) be the Markov chain obtained from SH!. Let (V1,V2) be any vertex cut of G such that
~vr € V. We denote the directed edges that cross from V;j to Va by E(Vi, V) = {(v,v’) € E|v € V1,0 € Va},
and let P(V7, V) be the set of all labels X; ; C P associated with the edges (7,7) in E(Vi, V2) such that the
associated probability @; ; is positive. Since M € poc C pc, Qi,; > 0 only if X; ; is a singleton.

Lemma 1. For any distributed system S = (N, A), if there is a cut (V1,Va) such that P(V1,V2) # {{p} :
p € P} in G, then 7 = oo.

Proof. Suppose that there exists a cut (Vq,Va) such that P(Vy,Va) # {{p} : p € P} and let {p} ¢ P(V1,V%).
Consider a probabilistic scheduler instance M in pp¢ that assigns probability (1—¢) to {p} for arbitrary small
e. For any execution of Sp! starting from a configuration in V;, the expected number of steps necessary to
cross this cut is e ~!. Hence the maximum convergence time is at least e ~'. For any D, M makes 7 arbitrarily
large. O

In order for 7 to have a finite value, for any cut (V1, V), P(V1,V2) = {{p} : p € P} must hold, which
implies that in any configuration -, all processes in P are enabled unless v € 1.

Let E, be the set of edges in G labeled with {p}. From Lemma 1, for any p € P, the subgraph G, = (V, E},)
is 1-regular in the sense that for any state except v, the out degree is exactly one. Therefore G}, forms a
rooted in-tree rooted at ~yz, if and only if it is weakly connected. Otherwise, G, consists of multiple connected
components, and we have 7 = oo by taking a cut that separates these connected components. We thus obtain
the next lemma.

Observation 1 If G, is not a rooted in-tree for some p € P, then T = oo.

Because the assumption that D is pure and the procedure to obtain Sx! from M, the regularity condition
of § is equivalent to the condition that G, is a rooted in-tree rooted at ;. Hence, we proved that regularity
is a necessary condition for 7 < oc.

In the following, we show that regularity condition is sufficient for 7 to be finite under poc. For any pure
probability distribution D and probabilistic scheduler instance M € poc, consider Sgl, and then construct
G. An execution in Sgl, is a Markov chain in G. Let X; (t =0,1,...) be a random variable that represents
the configuration of this execution at time ¢ with Xy = 70.6 The convergence time ¢ of this execution is then
the hitting time from vy to vy.

6 Although the state space of SA! is I' x £2, we identify (v,w) with v, since {2 is a singleton.
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Lemma 2. Lety =argmax .y Pr[HT, ., >t]. Foranyy €V, Pr[HT, ,, > t] has the sub-multiplicativity:
Pr[HT,,, >2i] < (Pr[HT, ,, > t])2~
Proof. Let Xo = g, X1,... be a Markov chain on G. From the conditional probability, we have

Pr[HT, ., > 21
S Pr(Xe =+ AHT,,, >t]-Pr[HTy,, >t | Xe =+ AH,,, >t

Yy eV

= ZPr Ty > )N (Xe = NHyyy > )]
y'ev

< SO Pr[(HTy 5y >0 A(Xe =7 A Hyy > 1)]
y'ev

=Pr[HT, ,, >1- > Pr(Xy=+AH,,, >t

yev
S Pr [HT’Y sYL > t} - Pr [H’Y/YL > t] S (Pr [HT’Y YL > t])Q .

The fourth and the last lines are obtained from the definition of v . O

Lemma 3. § satisfies the regularity condition only if T < 0o under poc.

Proof. We show
> = > .
00 > Tp, Mrré%)éc TDILM>T
For any probabilistic scheduler instance M € poc, consider Sﬁ/l, and then construct G. Let € be the
maximum probability that is assigned to a transition of M and {p} be the label of the transition. Because
I is finite, the probability that G reaches vz, by tracing G,, is no less than €”, where h is the height of G,.
We have Pr[HT, ., < h] > ¢€". Let § =1 —€", then

Pr[HT, ., >h] <1—¢€"=0.

Note that M € poc cannot make € arbitrarily small, and indeed € > 1/|P|.
For any M € poc, let 7 be the time that an execution starting from 7y = argmax, ¢ Dy, Mm(7), takes
until it reaches v7,. We have

o =30 Prfr =i = 3 Prlr 21

3h o)
—ZPI‘T>Z—|—ZPI‘T>’L Z Pr[r > + Z Pr[r > {]
i=h+1 i=2h+1 1=3h+1
§ZPr[T>z ZPI‘T>h Z Pr[r > 2h] + Z Pr[r > 1]
i=1 i=h+1 i=2h+1 1=3h+1

<h+hd+hd*+ Y Prfr>i]
i=3h+1

1 h
<h+hd+hd’+ - =h—: < —

13 6h<oo.

0O

The, we have the proof for Theorem 1 with Lemma 1 for the if part, and Lemma 3 for the only-if part.
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3.2 7* under po, pc or pr

We next consider po whose instances M may activate any subset X C P, i.e., M may activate more than
one processes at a time. In Theorem 1, we use D; to show 7 < oo. Here we use Dy, p| to this end.

Theorem 2. S satisfies the reqularity condition if and only if T < oo under po.

Proof. The If-part follows from poc C po. If S does not satisfy the regularity condition, then there is a cut
for which there exists an M € ppoc C po that makes 7 = oo by Lemma 1.
We prove the only-if part by showing

00 = Ty p) = X Dy py M =

We show a positive lower bound on the probability that any execution reaches ~;, in some fixed steps.
Then by using the same argument in the proof of Theorem 1, we can conclude 7 < oo. Note that Dy p)
adds self-loops to each configuration, which cause some slowdown, but its amount is finite.

Consider any probabilistic scheduler instance M € po. Let € be the maximum probability that M assigns
to a transition, and let X C P be the label associated with this transition. Hence € > 1/2‘P|. By using Dy |p,
we can produce a singleton sequence for some p € X.

The probability that only p is executed (as the result of the random choice by D, p|), when X is activated
by M is (1/|P|)(1—1/|P|)!XI=1. Let h be the height of G,,. Then the probability that h consecutive executions
of p occurs is (e(1/|P])(1 — 1/|P|)!¥I=1)". Hence the probability that an execution reaches vz, in h steps is
no less than a constant (in M) (1/2%(1/n)(1 — 1/n)" ")) = ((1 — 1/n)"~1/(n2"))". i

We next consider pc. There is a deterministic distributed system such that 7 = oo holds if the scheduler
is not oblivious, even if it is central, i.e., under pc.

Consider a distributed system S shown in Figure 1. It executes an algorithm A on N = (P, L), where
P = {p,q} and L = {(p,q),(¢q,p)}. Process p (resp. ¢) has a variable v, (reps. vq) that takes an integer
in {0,1,2,3}. The legitimate configurations are those satisfying v, = v, € {1,2,3}. The transitions of S is
represented by the state machine shown in Figure 2, where s4 corresponds to the legitimate configurations.

Let M € pc be a probabilistic scheduler instance with 2 = {1, 2}. Its transition probabilities are defined
by Piog=PFPs1 =1—¢€and P, = P55 = e. The transitions (1,2) and (2,2) are labeled with {p}, and (2,1)
and (1, 1) are labeled with {g}. If the initial configuration is v, = vy = 0, the expected convergence time can
be arbitrarily large by taking arbitrarily small €, that makes M outputs {q¢}{p}{q}{p}{q} ... with arbitrarily
high probability. To overcome this problem, we use D; /5 to ignore some activations.

Fig. 1. The transition diagram of S. (Each pair represents (vp,vq).)

Theorem 3. S satisfies the reqularity condition if and only if T < oo under pc.
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Fig. 2. The state machine corresponding to S

Proof. Since poC C po, the If-part holds by the same argument as in the proof of Theorem 2.
We prove the only-if part by showing

00 > Tp, ), :AI/IlleapXCTDI/%M >T .

As in the proof of Theorem 2, we show a positive lower bound on the probability that any execution
reaches vy, in some fixed steps. Then by using the same argument in the proof of Theorem 1, we can conclude
T < o0.

Let Q@ = (Q1,Q2,...,Qk) be the strongly connected components of the transition graph of M, and let
Q' C Q be the set of sink components in Q. Then any Markov chain reaches some sink component in a finite
time. Suppose that M reaches Q; € Q.

Let € be the maximum probability assigned to an transition in @; and let X C P be the label of
this transition. Since the scheduler is central, X is a singleton and € > 1/|P|. By using D;/;, we can
probabilistically produce a sufficiently long sequence of a singleton {p} for some process p € P, by making
processes g # p to refuse activations, and discarding all their activations between two activations of {p}.
Since (Q; is a sink component of finite size, all states are positive recurrent, and this transition is repeated,
in average, every a constant number of steps, say t,. Without loss of generality, we assume that p is such
that t, is maximized, thus t, > 1/n.

Let h be the height of G,. The probability that the execution follows G, to reach vy, in ¢ - h steps is

h
greater than or equal to (e((l/Q)Q‘P‘ )tl’> , which is a constant in M O

As for pp, by following the proofs of Theorems 2 and 3 we obtain the following theorem.

Theorem 4. S satisfies the reqularity condition if and only if T < oo under pp.

4 Finite Expected Convergence Times of Infinite Systems

In this section, we investigate a necessary and sufficient condition for a infinite system under a finite prob-
abilistic scheduler to have a finite 7 . When there is a local variable with an infinite domain, then I is
infinite.

The sufficient condition for 7 < oo given in Section 3 depends on the fact that the height of rooted
in-tree G, is finite for each p € P. However, in an infinite system, the height of G, may be infinite.

Let S = (N, .A) be a weak stabilizing infinite system under op. The following lemma promises that the
height of G, is finite even in a infinite system if 7 < oco. Let h), be the height of G), for p € P.

Lemma 4. S satisfies the regularity condition and hy, is finite for each p € P, if T < 0o under poc.

Proof. If there exists a cut (V1,Va) in G such that Vo contains 7y, and {p} ¢ P(V1,Vs) for some p € P,
then there exists a probabilistic scheduler instance in poc that assigns arbitrarily small probability € to each
process ¢ € P\ {p}. Then the expected time to cross this cut becomes arbitrarily large when e approaches
to 0. Hence, if 7 = 0o, then S has the regularity.
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Suppose, for some ¢ € P, hy = co. Let Y = (...,+,7”,...,v) be an infinite directed path to v in
Gy. The transitions from v € Y are labeled with processes in P\ {q}. Hence, there exists a probabilistic
scheduler instance M € poc that outputs {¢} with probability 1 —e. When € approaches to 0, the executions
starting from a configuration v € Y traces the postfix of Y with arbitrarily high probability, and 7 becomes
arbitrarily large. It is a contradiction and G, of each p € P is of finite height. ]

Thus all discussions in Section 3 hold in the infinite systems.

Theorem 5. S satisfies the reqularity condition and hy, is finite for each p € P, if and only if T < oo under
poc-

Proof. If part is by Lemma 4, and the only-if part follows the proof of Theorem 1.

From the same discussion as in Section 3, we have the following theorem.

Theorem 6. S satisfies the regularity condition and for each h, is finite for each p € P, if and only if
T < oo under po, pc, and pr.

5 Conclusion

We investigated the power of algorithm randomization against adversarial yet probabilistic schedulers. We
presented necessary and sufficient conditions for finite and infinite probabilistically stabilizing systems to
exhibit finite expected stabilization time. Except for oblivious central schedulers, algorithm randomization
is necessary to guarantee finite expected stabilization time. Two important open questions are raised by our
work:

1. On the theoretical side, it is worth investigating the question of optimal randomization of an algorithm, in
order to obtain the minimum expected stabilization time, for a given probabilistic scheduler distribution.

2. On the practical side, it would be interesting to collect execution metrics for actual networks and derive
realistic probabilistic scheduler distributions.
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Abstract

In this paper, we consider the partial gathering problem of mobile agents in asynchronous rings,
which requires, for a given input g, that each agent should move to a node and terminates so
that at least g agents should meet at the same node. The requirement for the partial gathering
is weaker than that for the ordinary (total) gathering, and thus, we have interests in clarifying
the di erence on the move complexity between them. We propose two algorithms to solve the
partial gathering problem. One algorithm is deterministic and assumes unique ID of each agent.
The other is randomized and assumes anonymous agents. The deterministic (resp., randomized)
algorithm achieves the partial gathering in O(gn) (resp., expected O(gn + nlogk)) total number
of moves where n is the ring size and k is the number of agents, while the total gathering requires
Q(kn) moves. We show that the move complexity of the deterministic algorithm is asymptotically
optimal.

keyword: distributed system, mobile agent, gathering problem, partial gathering

1

In this paper, we consider a new variant of
the gathering problem, called the partial gather-
ing problem. The partial gathering problem does
not always require all agents to gather at a single
node, but requires agents to gather partially at
several nodes. More precisely, we consider the
problem which requires, for given input g, that

Introduction

1.1 Background and our contribution

A distributed system is a system that consists of
a set of computers (nodes) and communication
links In recent years, distributed systems have
become large and design of distributed systems

has become complicated. As a way to design ef-

cient distributed systems, (mobile) agents have
attracted a lot of attention [1, 2, 3, 4, 5, 6, 7, 8,
9, 10]. Agents simplify design of distributed sys-
tems because they can traverse the system and
process tasks on each node.

The gathering problem is a fundamental prob-
lem for cooperation of agents [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11]. The gathering problem requires
all agents to meet at a single node in nite time.
The gathering problem is useful because, by meet-
ing at a single node, all agents can share infor-
mation or synchronize behaviors among them.
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each agent should move to a node and termi-
nate so that at least g agents should meet at the
same node. We de ne this problem as the g-
partial gathering problem. Clearly, if %k <g k
holds, the g-partial gathering problem is equal
to the ordinary gathering problem. If g %k
holds, the requirement for the g-partial gather-
ing problem is weaker than that for the ordinary
gathering problem, and thus it seems possible
to solve the g-partial gathering problem with a
smaller total number of moves. In addition, the
g-partial gathering problem is still useful because
agents can share information and process tasks



Table 1: Proposed algorithms for the g-partial gathering problem in asynchronous unidirectional

rings.
Model Algorithm 1 Algorithm 2
Unique ID Available Not available
Deterministic/Randomized | Deterministic | Randomized
Knowledge of k& Not available Available
The total number of moves O(gn) O(nlogk + gn)

cooperatively among at least g agents.

The contribution of this paper is to clarify
the di erence on the move complexity between
the gathering problem and the g-partial gather-
ing problem. We consider the g-partial gathering
problem in asynchronous unidirectional rings.
The contribution of this paper is summarized in
Table 1.1. First, we propose a deterministic al-
gorithm to solve the g-partial gathering prob-
lem for the case that agents have distinct IDs.
This algorithm requires O(gn) total number of
moves. Second, we propose a randomized al-
gorithm to solve the g-partial gathering prob-
lem for the case that agents have no IDs and
agents know the number of agents. This algo-
rithm requires O(nlogk + gn) total number of
moves, while the total gathering requires Q(kn)
moves. The two algorithms imply that the g-
partial gathering problem can be solved in a
smaller total number of moves compared to the

ordinary (total) gathering problem for both cases.

In addition, we show that the total number of
moves is Q(gn) for the g-partial gathering prob-
lem. This means the rst algorithm is asymp-
totically optimal in terms of the total number of
moves.

1.2 Related works

Many fundamental problems for cooperation of
mobile agents have been studied in literature.
For example, the searching problem [7, 8|, the
gossip problem [9], the election problem [10], and
the gathering problem [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11] have been studied.

In particular, the gathering problem has re-
ceived a lot of attention. The gathering prob-
lem has been extensively studied in many topolo-

gies, which include trees [1, 9], tori [1, 5], and
rings [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]. The gather-
ing problem for rings has been extensively stud-
ied because algorithms for such highly symmet-
ric topologies give techniques to treat the essen-
tial di culty of the gathering problem such as
breaking symmetry. Actually, to solve the gath-
ering problem, it is necessary to select exactly
one gathering node, i.e., a node where all agents
meet. There are many ways to select the gather-
ing node. For example, in [1, 2, 3, 4, 5, 6], agents
leave marks (tokens) on their initial nodes and
select the gathering node based on every distance
of neighboring tokens. In [7, 8|, agents have dis-
tinct IDs and select the gathering node based on
the IDs. In [11], agents can use random num-
bers and select the gathering node based on IDs
generated randomly. In [1, 9, 10], agents execute
the leader agent election and the elected leader
decides the gathering node.

2 Preliminaries

2.1 Network model

A wunidirectional ring network R is a tuple R =
(V, L), where V is a set of nodes and L is a set
of communication links. We denote by n (= |V|)
the number of nodes. Then, ring R is de ned as
follows.

o V:{Uo,vl,...,vn 1}

¢ L={vi,Vi41)modn |0 & n 1}

We de ne the direction from v; to v;41 as a for-
ward direction, and the direction from v;41 to v;
as a backward direction.

In this paper, we assume nodes are anony-
mous, i.e., each node has no ID. Every node
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v; € V has a whiteboard and agents on node
v; can read from and write to the whiteboard
of v;. We de ne W as a set of all states of a
whiteboard.

2.2 Agent model

Let A = {aj,aq9,...,ar} be a set of agents. We
consider two model variants.

In the rst model, we consider agents that
are distinct (i.e., agents have distinct IDs) and
execute a deterministic algorithm. We model an
agent as an identical nite automaton
(S, Sinitials Sfinal)- The 1st element S is the
set of all states of agents, which includes initial
state sinitiqr and nal state sfing. The second
element is the state transition function. Since
we treat deterministic algorithms, is described
as : S W—-=5 W M,

where M = {1,0} represents whether the
agent makes a movement or not in the step. The
value 1 represents movement to the next node
and 0 represents stay at the current node. Since
rings are unidirectional, each agent only moves to
its forward node. We assume that agents move
instantaneously, that is, agents always exist at
nodes (do not exist at links). Moreover, we as-
sume that each agent cannot detect the number
of agents on its current node.

In the second model, we consider agents that
are anonymous (i.e., agents have no IDs) and
execute a randomized algorithm. We model an
agent similarly to the rst model except for state
transition function . Since we treat randomized
algorithms, is described as : S W R —
S W M, where R represents a set of random
values. In addition, we assume that each agent
knows the number of agents.

2.3 System con guration

In an agent system, (global) con guration c is
de ned as a product of states of agents, states
of nodes (whiteboards), and locations of agents.
We de ne C' as a set of all con gurations. In
initial con guration ¢y € C, we assume that no
pair of agents stay at the same node. We assume
that each node v; has variable v;.initial that in-
dicates existence of agents in the initial con g-
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uration. If there exists an agent on node v; in
the initial con guration, the value of v;.initial is
one. Otherwise, the value of v;.initial is zero.
Let A; be an arbitrary non-empty set of agents.
When con guration ¢; changes to c;+1 by the ac-
tion of every agent in A;, we denote the tran-
sition by ¢; A, Ci+1. When a; € A; moves to
the next node or changes some states (of its own
or the whiteboard), we say that agent a; takes
one step. If multiple agents at the same node
are included in A;, the agents take steps simul-
taneously. When A; = A holds for any i, all
agents perform simultaneously. This model is
called the synchronous model. Otherwise, the
model is called the ashynchronous model.

If sequence of con gurations E = cg,cq,...
satis es ¢; A, ci+1 (1 0), E is called an
execution starting from cg. Execution F is in -
nite, or ends in nal con guration cy;pe where
no agent can take a step.

2.4 Partial gathering problem

The requirement of the partial gathering prob-
lem is that, for a given input g, each agent should
move to a node and terminate so that at least g
agents should meet at the node. Formally, we de-
ne the g-partial gathering problem as follows.

De nition 2.1. Ezecution E solves the g-partial
gathering problem when the following conditions

hold:
o Frecution E is nite.

e In the mnal con guration, for any node v;
such that there exist some agents on vj,
there exist at least g agents on v;.

For the g-partial gathering problem, we have
the following lower bound.

Theorem 2.1. The total number of moves re-
quired to solve the g-partial gathering problem is

Q(gn).

Proof. We consider an initial con guration such
that all agents are scattered evenly. We assume
n = ck holds for some positive integer c. Let
V' be the set of nodes where agents exist in the



nal con guration, and let = |V'|. Since at
least g agents meet at v; for any v; € V', we
have £k  gzx.

For each v; € V', we de ne A; as the set of
agents that meet at v;. Then, among agents in
Aj, the i-th smallest number of moves to get to
vj is at least (¢ 1)n/k. We de ne Af as the set
of g agents such that the number of moves is the
smallest, and Af =A; Af . Let T]S and TjL be
the total number of moves of agents in A]S and
Af respectively. Then, we have

and

TL

Ly gn
J ‘Aj| 1.
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Therefore, the total number of moves is at least
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Since k gz holds, we have

Thus, the total number of moves is at least Q(gn).
O

3 A Deterministic Algorithm
for Distinct Agents

In this section, we propose a deterministic al-
gorithm to solve the g-partial gathering problem
for distinct agents (i.e., agents have distinct IDs).
The basic idea to solve the g-partial gathering is
that agents select a leader and then the leader
instructs other agents which node they meet at.
However, since Q(n log k) total number of moves
is required to elect one leader [9], it is impossible
to solve the g-partial gathering in asymptotically
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optimal total number of moves (i.e., O(gn)). To
overcome this lower bound, we select multiple
agents as leaders by executing leader agent elec-
tion partially. By this behavior, our algorithm
solves the g-partial gathering problem in O(gn)
total number of moves.
The algorithm consists of two parts. In the
rst part, agents execute leader agent election
partially and elect some leader agents. In the
second part, leader agents instruct the other
agents which node they meet at, and the other
agents move to the node by the instruction.

3.1 The

The aim of the rst part is to elect leaders that
satisfy the following properties: 1) At least one
agent is elected as a leader, 2) At most |k/g]
agents are elected as leaders, and 3) There ex-
ist at least ¢ 1 non-leader agents between two
leader agents. To attain this goal, we use a tra-
ditional leader election algorithm [12]. However
the algorithm in [12] is executed by nodes and
the goal is to elect exactly one leader. So we
modify the algorithm to be executed by agents,
and then agents elect at most |k/g] leader agents
by executing the algorithm partially.

During the execution of leader election, the
states of agents are divided into the following
three types:

rst part

e active: The agent is performing the leader
agent election as a candidate of leaders.

e inactive: The agent has dropped out from
the candidate of leaders.

e Jeader: The agent has been elected as a
leader.

First, we explain the idea of leader election by
assuming that the ring is bidirectional. The algo-
rithm consists of several phases. In each phase,
each active agent compares its own ID with IDs
of its left and right neighbor active agents. More
concretely, each active agent writes its ID on
the whiteboard of its current node, and then
moves forward and backward to observe IDs of
the forward and backward active agents. If its
own ID is the smallest among the three agents,



the agent remains active as a candidate of lead-
ers. Otherwise, the agent drops out from can-
didates of leaders and becomes inactive. By do-
ing this, at least half active agents become inac-
tive in each phase. Consequently, after executing
[log g] phases, the number of active agents be-
comes at most |k/g|. Then, from [12], the num-
ber of inactive agents between two active agents
is at least ¢ 1. Therefore, all remaining active
agents become leaders. Note that, during the
execution of the algorithm, the number of active
agents may become one. In this case, the active
agent immediately becomes a leader.

In the following, we implement the above al-
gorithm in asynchronous unidirectional rings.
First, we apply a traditional approach [12] to im-
plement the above algorithm in a unidirectional
ring. Let us consider the behavior of active agent
ap. In unidirectional rings, aj, cannot move back-
ward and so cannot observe the ID of its back-
ward active agent. Instead, a; moves forward
until it observes IDs of two active agents. Then,
ap, observes IDs of three successive active agents.
We assume ayj, observes idy, idy, ids in this order.
Note that idg is the ID of a;,. Here this situation
is similar to that the active agent with ID id; ob-
serves idg as its backward active agent and ids
as its forward active agent in bidirectional rings.
For this reason, aj, behaves as if it would be an
active agent with ID id; in bidirectional rings.
That is, if ¢dy is the smallest among the three
IDs, a;, remains active as a candidate of leaders.
Otherwise, aj, drops out from the candidate of
leaders and becomes inactive. After the phase,
ay, assigns idy to its ID if it remains active as a
candidate.

For example, consider the initial con gura-
tion in Fig 1 (a). In gures, the number near
each agent is the ID of the agent and the box
of each node represents the whiteboard. First,
each agent writes its own ID to the whiteboard
on its initial node. Next, each agent moves for-
ward until it observes two IDs, and then the con-

guration is changed to the one in Fig 1 (b).
In this con guration, each agent compares three
IDs. The agent with ID 1 observes IDs (1, 8,
3), and so it drops out from the candidate be-
cause the middle ID 8 is not the smallest. The
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g ‘active
’ linactive

Fig 1: An example for a g-partial gathering
problem(k = 9,9 = 3)

agents with IDs 3, 2, and 5 also drop out from
the candidate. The agent with ID 7 observes IDs
(7, 1, 8), and so it remains active as a candidate
because the middle ID 1 is the smallest. Then,
it updates its ID to 1. The agents with IDs 8,
4, and 6 also remain active as candidates and
similarly update their IDs.

Next, we explain the way to treat asynchronous
agents. To recognize the current phase, each
agent manages phase number. Initially, the phase
number is one, and it is incremented when each
phase is completed. Each agent compares IDs
with agents that have the same phase number.
To realize this, when each agent writes its ID
to the whiteboard, it also writes its phase num-
ber. That is, at the beginning of each phase,
active agent aj, writes a tuple (phase, idy) to the
whiteboard on its current node, where phase is
the current phase number and idy, is the ID of ay,.
After that, agent a; moves until it sees two IDs
with the same phase number as that of a. Then,
ap, decides whether it remains active as a candi-
date or becomes inactive. If aj remains active,
it updates its own ID. Agents repeat these be-
haviors until they complete the [log ¢g]-th phase.

For example, consider the initial con gura-
tion in Fig 1 (a). In gures, the number near
each agent is the ID of the agent and the box
of each node represents the whiteboard. First,
each agent writes its own ID to the whiteboard



on its initial node. Next, each agent moves for-
ward until it observes two IDs, and then the con-

guration is changed to the one in Fig 1 (b).
In this con guration, each agent compares three
IDs. The agent with ID 1 observes IDs (1, 8,
3), and so it drops out from the candidate be-
cause the middle ID 8 is not the smallest. The
agents with IDs 3, 2, and 5 also drop out from
the candidate. The agent with ID 7 observes IDs
(7, 1, 8), and so it remains active as a candidate
because the middle ID 1 is the smallest. Then,
it updates its ID to 1. The agents with IDs 8§,
4, and 6 also remain active as candidates and
similarly update their IDs.

Next, we explain the way to treat

asynchronous agents. To recognize the current
phase, each agent manages phase number. Ini-
tially, the phase number is one, and it is incre-
mented when each phase is completed. Each
agent compares IDs with agents that have the
same phase number. To realize this, when each
agent writes its ID to the whiteboard, it also
writes its phase number. That is, at the begin-
ning of each phase, active agent aj writes a tu-
ple (phase,idy) to the whiteboard on its current
node, where phase is the current phase number
and idy is the ID of ap. After that, agent ap
moves until it sees two IDs with the same phase
number as that of aj. Then, a; decides whether
it remains active as a candidate or becomes inac-
tive. If aj remains active, it updates its own ID.
Agents repeat these behaviors until they com-
plete the [log g]-th phase.
Pseudocode. The pseudocode to elect leader
agents is given in Algorithm 1. All agents start
the algorithm with active states. The pseudocode
describes the behavior of active agent aj, and
v; represents the node where agent a; currently
stays. If agent aj, becomes an inactive state or a
leader state, a; immediately moves to the next
part and executes the algorithm for an inactive
state or a leader state in section 3.2.

Agent ap uses variables ap.idi, ap.ide, and
ap.ids to store three IDs of three successive ac-
tive agents. Note that aj, stores its ID on ay.id;
and initially assigns its initial ID (ay.id) to ap.id;.
Variable aj.phase stores the phase number of
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Algorithm 1 The behavior of active agent ay,
(Node wvj is the current node of ay.)

1: set ap.phase = 1 and ap.id; = ap.id

2: if vj.inactive = 1 then

3: // Some agents have passed aj, before ay,
starts the algorithm.

4:  become inactive

5. end if

6: set (vj.phase,v;.id) = (ay.phase, ap.idy)

7. BasicAction()

8: set ap.idy = vj.id

9: BasicAction()

10: set ap.1d3 = vj;.id

11: if ap.ide > min(ah.idl, ah.idg) then
12:  set vj.anactive = 1

13:  become inactive

14: else

15:  if ap.phase = [log g] then

16: become a leader

17:  else

18: set ap.phase = ap.phase + 1
19: set ap.id1 = ap.ids

20: end if

21 return to step 6

22: end if

ap. Each node v; has variable (v;.phase,v;.id),
where an active agent writes its phase number
and its ID. For any v;, variable (vj.phase,v;.id)
is (0,0) initially. In addition, each node v; has
variable v;.inactive. This variable represents
whether there exists an inactive agent on v;. That
is, agents update the variable to keep the follow-
ing invariant: If there exists an inactive agent on
vj, vj.inactive = 1 holds, and otherwise
vj.inactive = 0 holds. Initially v;.inactive = 0
holds for any v;. In Algorithm 1, a; uses pro-
cedure BasicAction(), by which agent aj;, moves
to node v satisfying vj.phase = ap,.phase.

We give the pseudocode of BasicAction() in
Algorithm 2. In BasicAction(), the main be-
havior of aj is to move to node vy satisfying
vjr.phase = ap.phase. To realize this, a; skip
nodes such that no agent initially exists (i.e.,
vj.initial = 0) or an inactive agent currently
exists (i.e., vj.inactive = 1), and continue to
move until it reaches a node where some active



Algorithm 2 Procedure BasicAction() for ap

1. procedure BasicAction()
2: move to the forward node
while (vj.initial = 0) V (v;.inactive
do
move to the forward node
end while
if v;.phase = 0 then
set vj.inactive = 1
return to step 2
end if
if ap,.phase # vj.phase then
wait until wv;.phase
vj.enactive = 1
if v;.inactve =1 then
return to step 2
end if
end if
// ap, reaches v; s.t. vj.phase = ay.phase.
if (vj.phase,v;.id) (ap.phase, ap.idy)
then
become a leader
end if
end procedure

W

D

11: ap.phase or
12:
13:
14:
15:
16:
17: =
18:
19:
20:

agents start the same phase (lines 3 to 5). In
addition to this behavior, a; makes some behav-
iors to treat asynchrony. If ap nds agent a,
that has not yet started the algorithm on vj, aj
makes a, drop out from candidates by setting
vj.inactive = 1 (lines 6 to 9). When a, notices
that it has passed some active agents, a; waits
until the agents catch up with a; (lines 10 to
15). If the agent becomes inactive, a; continues
to move (lines 12 to 14). During the algorithm,
it is possible that aj becomes the only one can-
didate of leaders. In this case, a; immediately
becomes a leader (lines 17 to 19).

Analysis. We have the following lemma about
Algorithm 1 [12].

lemma 3.1. After executing Algorithm 1, the
con guration satis es the following.

o There exists at least one leader agent.

e There exist at most L%J leader agents.
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Fig 2: The realization of partial gathering(g = 3)

e There exist at least g 1 inactive agents

between two leader agents.
In addition, we have the following lemma [12].

lemma 3.2. The total number of moves to exe-
cute Algoritm 1 is O(nlogg).

3.2 The second part

In this section, we explain the second part, i.e.,
an algorithm to achieve g-partial gathering by
using leaders elected by the algorithm in sec-
tion 3.1. Let leader nodes (resp., inactive nodes)
be the nodes where an agent becomes a leader
(resp., an inactive agent) in the rst part. The
idea of the algorithm is as follows: First each
leader agent ay, writes 0 to the whiteboard on the
current node. Then, a; repeatedly moves and,
whenever ap visits an inactive node, aj writes
y mod g to the whiteboard, where ¥ is the num-
ber of inactive nodes aj has ever visited. That
is, ap, writes 0,1,...,9 1,0,1,... to the white-
board on inactive nodes. This number is used to
instruct inactive agents where they should move
to achieve g-partial gathering. Agent aj contin-
ues this operation until it visits the node where
0 is already written to the whiteboard. Note
that this node is a leader node. For example,
consider the con guration in Fig 2 (a). In this
con guration, agents a; and ao are leader agents.



First, a1 and as write 0 to their current white-
boards, and then they move and write numbers
to whiteboards until they visit the node where 0
is written on the whiteboard. Then, the system
reaches the con guration in Fig 2 (b).

Then, each non-leader agent (i.e., inactive
agent) moves based on the leader’s instruction,
i.e., the number written to the whiteboard. More
concretely, each inactive agent moves to the node
where 0 is written to the whiteboard. For ex-
ample, after the con guration in Fig 2 (b), the
system reaches the con guration in Fig 2 (c).
Note that a node where 0 is written is a leader
node or an inactive node. If the node is an in-
active node, g agents meet at the node. If the
node is a leader node, it is possible that only less
than ¢ agents meet at the node. In this case,
the agents continue to move until they visit the
next node where 0 is written. By executing such
operations, agents can solve the g-partial gather-
ing problem. For example, there exist only two
agents on the node where ay exists in Fig 2 (c).
So the two agents continue to move until they
visit the next node where 0 is written (Fig 2 (d)).

Pseudocode. In the following, we show the
pseudocode of the algorithm. In this part, states
of agents are divided into the following three
states

e [eader: The agent instructs inactive agents
where they should move.

e inactive: The agent waits for the leader’s
instruction.

e moving: The agent moves to its gathering
node.

In this part agents continue to use v;.initial
and vj.tnactive. Remind that vj.initial = 1 if
and only if there exists an agent at v; initially.
Algorithm 1 assures v;.inactive = 1 if and only
if there exists an inactive agent at v;. Note that,
since each agent becomes inactive or a leader at
a node such that there exists an agent initially,
agents can ignore and skip every node vj such
that vy .initial = 0.

The pseudocode of leader agents is described
in Algorithm 3. Variable ay.count is used to
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count the number of inactive nodes ay, visits (The
counting is done modulo g). The initial value
of ap.count is 0. Variable v;.count is used for
leader agents to instruct inactive agents. That
is, leader agent aj, writes ay.count to v;.count
when it visits inactive node v;. For any v;, the
initial value of v;.count is L. In asynchronous
rings, leader agent a;, may pass agents that still
execute Algorithm 1. To avoid this, a; waits
until the agents catch up with a;,. More pre-
cisely, when leader agent a; visits the node v;
such that v;.initial = 1, it passed such agents
if vj.inactive = 0 and v;.count =1 hold. This
is because vj;.inactive = 1 should hold if some
agent becomes inactive at v;, and v;.count = 0
holds if some agent becomes leader at v;. In this
case, aj waits there until either v;.inactive = 1
or vj.count = 0 holds (lines 8 to 10). When
leader agent updates v;.count, an inactive agent
on node v; becomes a moving state (line 12).
This behavior of inactive agents is given in the
pseudocode of inactive agents (See Algorithm 4).
After a leader agent reaches the next leader node,
it becomes a moving agent to move to the node
where at least g agents meet (line 17). Note that
variable ap.Bcount is used in the pseudocode for
moving agents, and so we explain the variable
later.

The pseudocode of moving agents is described
in Algorithm 5. Moving agent aj continues to
move until it visits node v; such that v;.count =
0. When a; visits such a node, it is possible
that only less than g agents come to the node
like Fig 2 (c). To solve this case, aj keeps the
value of v;.count for the previous inactive node
v; as variable ayp.Bcount. When a; visits node
v; such that vj.count = 0, if aj,.Bcount =g 1
holds, at least g agents come to v;. Otherwise,
less than g agents come to v;, and so aj, moves to
the next node v; such that v;.count = 0. Note
that, since there exist at least g 1 inactive nodes
between two leader nodes, at least g agents meet
at vjr.

In asynchronous rings, a moving agent may
pass leader agents. To avoid this, the moving
agent waits until the leader agent catches up with
it. More precisely, if moving agent ap, visits node
v; such that v;.initial = 1 and vj.count =1, ay



Algorithm 3 The behavior of leader agent ap,
(Node vj is the current node of ay.)

Algorithm 5 The behavior of moving agent ay,
(Node wvj is the current node of ay.)

1: set ap.count =0

2: set vj.count = ay.count and ay.count
ap.count + 1

3: move to the forward node

4: while v;.count # 0 do

5. while v;.initial = 0 do

6: move to the forward node

7. end while

8 if (vj.inactive = 0) A (vj.count =1) then

9: wait until v;.inactive = 1 or v;.count =
0

10:  end if

11:  if vj.inactive = 1 then

12: set vj.count = ap.count

13: // an inactive agent at v; becomes a
moving state

14: set ap.count = (ap.count + 1) mod g

15: set ap.Bcount = vj.count

16:  end if

17 move to the forward node

18: end while
19: become a moving state

Algorithm 4 The behavior of inactive agent ap,
(Node vj is the current node of ay.)

1: wait until v;.count #1
2: become a moving state

passed a leader agent. To wait for the leader
agent, aj, waits there until the value of v;.count
is updated.

Analysis. We have the following lemma about
the algorithm in section 3.2.

1: while v;.count # 0 do
2:  move to the forward node

3. if (vj.initial = 1) A (vj.count =1) then
4: wait until v;.count #_1

5. end if

6:  if vj.count #1 then

7: set ap.Bcount = vj.count
8 end if

9: end while

10: if ap.Bcount # g 1 then
11:  set ap.Bcount =0

12:  move to the forward node
13:  return to step 1

14: end if

15: terminate

(or moving) agent to move to node v; such that
vj.count = 0 (For example, the total number of
moves from Fig 2 (a) to Fig 2 (c)). The total
number of these moves is at most O(gn) because
each link is passed by agents at most g times.
Second let us consider the total number of
moves required for each agent ap to move to its
next node v;: such that v;.count = 0 in the case
of ap.Becount # g 1 (For example, the total
number of moves from Fig 2 (c) to Fig 2 (d)).
From the algorithm, only agents that arrived at
leader nodes can make such moves. Then, the
agents nd node v, such that v;.count = 0 be-
fore it visits the next leader node. This is be-
cause there exist at least ¢ 1 inactive nodes
between two leader nodes from Lemma 3.1. Con-
sequently, since at most ¢ 1 agents start these
moves at a leader node, each link is passed by
agents at most g 1 times, and thus the total

lemma 3.3. After the leader agent election, agentsnumber of these moves is at most O(gn).

solve the g-partial gathering problem in O(gn)
total number of mowves.

Proof. From the algorithm, clearly agents solve
the g-partial gathering problem. In the follow-
ing, we consider the total number of moves re-
quired to execute the algorithm.

First let us conider the total number of moves
required for each leader agent to move to its
next leader node, and required for each inactive
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Therefore, we have the lemma. ]

From Lemmas 3.2 and 3.3, we have the fol-
lowing theorem.

Theorem 3.1. When agents have distinct IDs,
our deterministic algorithm solves the g-partial
gathering problem in O(gn) total number of
moves.
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Fig 3: A randomized leader election for anony-
mous agents

4 A Randomized Algorithm for
Anonymous Agents

In this section, we propose a randomized algo-
rithm to solve the g-partial gathering problem
for the case of anonymous agents. The idea of
the algorithm is the same as that in section 3.
Agents elect leader agents in the rst part, and
the leader agents instruct the other agents where
they move in the second part. The di erence
from the algorithm in section 3 is that agents
elect exactly one leader by randomization in the

rst part. In the second part, we use the same
algorithm as that in section 3.

4.1 The rst part

In this subsection, we explain a randomized algo-
rithm to elect one leader agent from anonymous
agents. Similarly to section 3, the state of each
agent is either active, inactive, or leader. Ini-
tially all agents are active. If an agent becomes
inactive or a leader, it immediately moves to the
second part of the algorithm.

The algorithm consists of several phases. In
each phase, each active agent a; writes a ran-
dom bit to the whiteboard and moves to the
next node where its forward agent ay writes a
random bit. Then, a;, compares the random bit
of aj, with that of ay. If the random bit of aj, is
zero and the random bit of ay is one, aj drops
out from candidates of the leader. Otherwise, ay,
remains active as a candidate, and moves to the

Algorithm 6 The behavior of active agent ay,
(Node wvj is the current node of ay.)

1: set ap.phase =1 and ap.num =0

2: if vj.inactive = 1 then

3: // Some agents pass aj, before aj starts

the algorithm.

become inactive

5: end if

6: set ap.r = 0 with probability 1/2
and ap.r = 1 with probability 1/2

7. set (vj.phase,v;.r) = (ay.phase, ap.r)

8: BasicAction2()

9: if ajp.r = 0 and v;.r = 1 then

10:  set vj.enactive = 1

11:  become inactive

12: end if

13: set ap.phase = ap.phase + 1

14: set ap.num =0

15: return to step 6

=

next phase. Since aj, drops out with probability
1/4 and at least one of a and ay remains ac-
tive as a candidate, eventually exactly one active
agent remains active as a candidate by repeat-
ing the phase. For example, consider the initial
con guration in Fig 3 (a).
boards are random bits written by the resident
agents. Each agent moves to the next node and
then compares random bits. Because the random
bit of a; is zero and the random bit of its forward
agent as is one, aj drops out from the candidate
of the leader. The other agents remain active as
candidates and update random numbers on the
whiteboards (Fig 3).

To execute the above algorithm, we treat asyn-
chronous agents in the same way as the algo-
rithm in section 3.1. Each agent manages phase
number to recognize the current phase. Each
agent writes its random bit together with its
phase number, and compares its random bit with
an agent that has the same phase number. In ad-
dition, since active agent a; may pass some other
active agents, ap waits in the same way until the
agents catch up with ay.

Numbers on white-

Pseudocode. The pseudocode of active agents
is described in Algorithm 6. Agent aj; stores

10
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its phase number in variable aj.phase and its

random bit in variable aj.r. Each node v; has

variable (v;.phase,v;j.r), where an active agent

writes its phase number and its random bit. For

any vj, variable (v;.phase,v;.r) is (0,0) initially.

In addition to these variables, a;, manages ap.num
to count the number of inactive agents in each

phase. If ap.num = k 1 holds, a; is a unique

active agent and thus becomes a leader (This be-

havior is implemented in BasicAction2()).

At the beginning of each phase, each ap gen-
erates a random bit and stores it in ap.r. Then, it
writes (ap.phase, ap,.r) to variable (v;.phase,vj.r)
at the whiteboard of its current node v;. Since
the forward active agent of aj also writes a ran-
dom bit to the whiteboard of its current node
vy, agent aj, compares the two random bits when
ayp, visits vy. In Algorithm 6, a; uses procedure
BasicAction2(), by which a;, moves to node vy
satisfying v; .phase = ay.phase.

We give the pseudocode of BasicAction2()
in Algorithm 7. The implementation is almost
the same as that of BasicAction() in section
3.2. The di erence is that a;, increments aj,.num
whenever aj, sees inactive agents. If aj observes
k 1 inactive agents, ay is a unique active agent
and thus becomes a leader.

Analysis. We have the following lemma about

Algorithm 6.

lemma 4.1. Algorithm 6 solves the leader agent
election with O(nlogk) expected total moves.

Proof. Consider the s-th phase (s = 1,2,...).
In the s-th phase, each active agent moves to
the node where another active agent starts s-th
phase. Consequently, the total number of moves
in s-th phase is n.

In each phase, only when an active agent
observes two random bits (0,1), it drops out
from the candidate and becomes inactive. This
means that each active agent becomes inactive
with probability 1/4 in the s-th phase. Thus,
the expected number of phases is log% k. This

implies the lemma. O

Algorithm 7 procedure BasicAction2()

1: procedure BasicAction2()
2: move to the forward node
3: while (vj.initial = 0) V (vj.inactive
do
if v;.inactive = 1 then

D

4

5: set ap.num = ap.num + 1
6: end if

7 move to the forward node

8: end while

9: if vj.phase = 0 then

10:  set vj.anactive = 1

11:  set ap.num = ap.num + 1

12:  return to step 2

13: end if

14: if vj.phase # ap.phase then

15:  wait until vj.phase = ap.phase or
vj.inactive = 1

16:  if vj.inactive = 1 then

17: set ap.num = ap.num + 1

18: return to step 2

19:  end if

20: end if

21: // ap, reaches v; s.t. vj.phase = ap.phase.

22: if ap.num =k 1 then

23:  become a leader

24: end if

25: end procedure

4.2 The second part

In the second part of this algorithm, we use the
same algorithm in section 3.2. Since Algorithm
6 selects exactly one leader agent, the conditions
in Lemma 3.1 hold for Algorithm 6. In addi-
tion, Algorithm 6 satis es the following: 1) Each
agent becomes inactive or a leader at node v;
such that vj.initial = 1, and 2) If there exists
an inactive agent on vj, vj.inactive = 1 holds,
and otherwise v;.inactive = 0 holds. Since these
are su cient conditions to apply the algorithm
in section 3.2, we can execute the algorithm in
section 3.2 after the algorithm in section 4.1.

Analysis. From Lemmas 4.1 and 3.3, we have
the following theorem.

11
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Theorem 4.1. When agents have no IDs, our
randomized algorithm solves the g-partial gath-
ering problem in O(nlogk + gn) expected total
moves.

5 Conclusion

In this paper, we have proposed two algorithms
to solve the g-partial gathering problem in asyn-
chronous unidirectional rings. The rst algo-
rithm is deterministic and assumes distinct agents,
and the second algorithm is randomized and as-
sumes anonymous agents. In the rst algorithm,
several agents are elected as leaders by executing
the leader agent election partially. On the other
hand, in the second algorithm, the unique leader
is elected. After the leader election, leader agents
instruct the other agents where they meet. We
have showed that the rst algorithm requires
O(gn) total moves, which is asymptotically opti-
mal. One of future works is to propose a random-
ized algorithm for anonymous agents to solve the
g-partial gathering problem in O(gn) expected
total moves. Another future work is to consider
the solvability of deterministic g-partial gather-
ing, that is, we will clarify what initial con gu-
rations are solvable and what complexity is re-
quired.
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Abstract

In this paper, we consider uniform deployment of mobile agents in a synchronous unidirectional network,
which requires the agents to uniformly spread on the network. First, we show a lower 8¢kindof the
number of agent moves, whekeandn are the numbers of agents and nodes respectively. We also present
threeO(kn)-moves (i.e., asymptotically optimal) algorithms (one for the whiteboard model and two for the
token model), and analyze their memory requirement and time complexity.
keyword: distributed system, mobile agent, uniform deployment, whiteboard, token

1 Introduction

In recent years, distributed systems have become important to satisfy demands for cost-effective large-scale
systems. A distributed system consists of a large number of computers (hodes) and communication links.
In distributed systems, each node needs to operate autonomously but cooperatively with others to achieve a
common goal. In addition, faults on nodes and communication links are likely to happen, and thus it is im-
portant to design distributed systems that can work in spite of some faults. To design such distributed systems,
mobile agenthave received much attention as a promising design paradigm[1]-[11]. A (mobile) agent is an
autonomous software that can move among nodes in the network with keeping some information.

A distributed system with mobile agents is callethabile agent systemigents can simplify the network
management [3, 4] because multiple agents can traverse the network and monitor the network configuration
cooperatively. For instance, agents can realize quick recovery from faults by detecting faulty nodes and notifying
other nodes of the information.

To realize mobile agent systems, there are many studies about agent algorithms that take advantage of auton-
omy and cooperativeness of agents. For instance, Suzuki et al.[5] considpssi@ problemwhich requires
all agents to share their information. They proposed gossip algorithms on the assumption that agents can com-
municate with others staying at the same node and can use whiteboard on each node. Another fundamental and
the most investigated problem is thendezvous proble@]-[10], which requires all agents to meet at a sin-
gle node. The rendezvous problem is considered in rings[6]-[7], torus[8], trees[9], and arbitrary networks[10].
Some works assume that agents can use whiteboard on each node, and others assume that agents can use on
tokens, which are markers agents can leave on nodes. Elor and Bruckstein[11] consmferad deployment
of multiple agents, which requires all agents to spread uniformly in the network. They propose uniform deploy-
ment algorithms under the assumption that agents are oblivious (or memoryless) but can observe multiple nodes
within its visibility range.

In this paper, we focus on the uniform deployment on synchronous unidirectional rings. From a practical
view point, the uniform deployment is useful for the network management. For instance, if agents that can repair
nodes are deployed uniformly in the network, such agents can quickly reach and repair faulty nodes after the
faults are detected. If agents with database are deployed uniformly, each node can quickly access the database.
The uniform deployment is interesting to investigate also from a theoretical point of view. The problem exhibits
a striking contrast to the rendezvous: the uniform deployment aims to attain the symmetry of agent locations
while the rendezvous aims to break the symmetry. It is well known that the symmetry breaking is difficult (and
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Table 1: Uniform deployment algorithms on synchronous unidirectional rings

|

[ Algorithm 1 | Algorithm 2 | Algorithm 3 |

ID (agent) available | notavailable| notavailable
communicatiormodel whiteboard token token
memoryrequirement (node)|  O(logk) 0(1) 0(1)
memoryrequirement (agent) O(logn) O(klogn) O(logn)
time complexity O(n) O(n) O(nlogk)
total agent moves O(kn) O(kn) O(kn)

nO thenumber of nodesO& the number of agents

sometimes impossible) to attain in distributed systems, and so is the rendezvous. Consequently, it is interesting
to clarify, as a direct contrast of the rendezvous, how easily the uniform deployment can be attained.

We consider the uniform deployment for agents that have memory but cannot observe nodes except for its
currently visiting node (this is different from [11]). Furthermore, we consider two types of communication
models, thewvhiteboard modeand thetoken model. In the whiteboard model, each agent can write to or read
from a whiteboard on each node. In the token model, each agent initially has a single token and can leave the
token on a visiting node.

Contributions of this paper are summarized in Table 1. We propose three algorithms for the uniform deploy-
ment on synchronous unidirectional rings. For all algorithms, the total number of agent m@(&s)iswhere
k is the number of agents amds the number of nodes. We show tifatkn) moves are necessary to solve the
uniform deployment problem, and thus these algorithms are asymptotically optimal in terms of the total num-
ber of moves. The first algorithm achieves the uniform deployment on the whiteboard model, and it requires
O(logk) memory per nodeQ(logn) memory per agent, an@(n) time. The second and the third algorithms
achieve the uniform deployment on the token model. The second algorithm realizes the uniform deployment in
asymptotically optimal time (i.eQ(n)) but requireD(klogn) memory per agent. The third algorithm reduces
the memory per agent ©(logn) by allowingO(nlogk) time.

2 Preliminaries

2.1 System model

A unidirectional ring network Rs defined as 2-tupl® = (V,E), whereV is a set of nodes anH is a set

of unidirectional links. We denote by(= |V|) the number of nodes and lgt= {vp,v1,...,Vh 1} andE =
{€o,€1,...,€n 1}(8 = (Vi,V(i11) moan))- FOr simplicity, operations to an index of a node assume calculation
under modulon, that is, V(i4+1) modn IS Simply represented byi,;. The distance fronvi(0 i n 1)to

vi(0O j n 1)isdefinedtobej i) modn.

We consider anobile agent systenmn which agents move in the network and perform some jobs at visiting
nodes. An agent is a state machine havingrétial state and aterminal state Letk ( n) be the number of
agents and\ = {ap,ay,...,a 1} be a set of agents. For simplicity, operations to an index of an agent assume
calculation under modull. Since the network is a unidirectional ring, agents staying aan move only to
Vi;1. Each agent can recognize whether another agent is staying at the same node or mmmé modeof
agentais the node whera stays initially, and is denoted by (a) . We consider aynchronousystem, that is,
all agents simultaneously start its actions and execute their actions in a lockstep fashion.

In this paper, we consider two model variations, Wieteboard mode&and thetoken model:

Whiteboard model: Each nodev(€ V) has a whiteboard, and each agent staying at the node can write to or
read from the whiteboard. In this model, we assume each agent has a distind(D@K) bits.

(Unremovable) token model: Each agent initially has a single token and can leave it on a visiting node. In this
model, we assume that each agent has no ID, and thus, agents cannot recognize the owner of each token.
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Figurel: An initial and a terminal configurations of the uniform deployment

A configuration(or global statelC of the agent system is defined as a tri@et (S T,P). The first element
Sis ak-tupleS= (s,s1,...,5 1) representing the agent stateCatvheres is the state og(0 i k 1).
The second elemerit is ann-tuple T = (to,t3,...,tn 1) denoting the node states whegeis the state (i.e.,
the whiteboard contents or the number of tokensy;00 | n 1). The last elemer® is ak-tuple P =
(Po, P1,---, Pk 1) denoting the agent locations whese= j implies that agend; is staying at node;(0 i
k 1,0 j n 1). Wedenote by the set of all the possible configurations of the agent system.
In initial configuration G € ¥, each agent is in its initial state, and the whiteboard of each node is empty
or each node has no token. When an agent completes execution of an algorithm, it changes its own state to the
terminal state. Aerminal configuratioris the one in which all agents are in the terminal states.
The configuratio; changes t€;_ ; by actions of agents. Each action of an agent consists of the followings.

1. Local computation: Agenta; on a nodey; updates the states af andv; depending on its current state, the
current state of; and the number of agents stayingiatWhen two or more agents are stayingiathey
execute their actions in an arbitrary order but the action of each agent is atomic (or non-interrupted).

2. Movement: Agenta; on a nodey moves to node;,, or stays at;. The decision whether it moves or not
depends on its (updated) state.

Let (gj be an action of; and®; be a set of actions of all agents, i@, = (¢°, @, ..., ¢¢ ). Anexecution
€ is a maximal alternating sequence of configurations and sets of aGidn€, P,C,P3. .., where®d; changes
G 1toC. The maximality implies that the execution is infinite or ends with a terminal configuration.

2.2 The uniform deployment problem

We define theuniform deployment probleis the problem that requiré$ 2) agents to spread uniformly in
a ring network (Figure 1). In the initial configuration, all agents are on arbitrary nodes, and we assume that no
two agents stay at the same node, that is, the home nodes of all agents are different from each other. Each node
initially has the empty whiteboard in the whiteboard model, and has no token in the token model.

In the terminal configuration, the distance of any djacent agentss identical. Here, we say two agents
are adjacent when there exists no agent between them in the ring. However, we should consider thercase that
is not a multiple ofk. So we aim to distribute the agents so that the distahoktwo adjacent agents should

satisfy|n/k| d [n/kK].
Definition 1 An algorithm solves the uniform deployment problem if any executigatisfies the followings.

e Executione is finite.

e In the terminal configuration of, each distancd of two adjacent agents satisfigs/k|] d [n/k]|. O

We evaluate théime complexityas the time required to reach the terminal configuration from any initial
configuration. In the synchronous system, we assume that it takes a time unit for agents to move to the adjacent
node, while we ignore the time for local computation.
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Figure2: The initial configuration to derive a lower boutxikn) of the total number of moves

3 Lower Bound of the Total Number of Agent Moves

In this section, we show a lower bound of the total number of agent moves required to achieve the uniform
deployment. We consider the initial configuration such that all agents stay in a quarter part of the ring (Figure
2). In Figure 2, the ring is divided into four quarter parts, and in the initial configuration, all agents are in the
parta (we assumé& n/4). To achieve the uniform deploymetkt/4 agents need to move to the peytand

each of them must move at leas#4 times. Thus the total number of moves is at léagd) (n/4) =kn/16.

Theorem 1 A lower bound of the total number of moves to solve the uniform deployment problem in a unidi-
rectional ring network i€2(kn), wheren is the number of nodes arkds the number of agents. O

We can also obtain the same lower boundHilirectionalrings from the above argument.

Corollary 1 A lower bound of the total number of moves to solve the uniform deployment problem in a bidi-
rectional ring network i€2(kn), wheren is the number of nodes arkds the number of agents. O

4 An Algorithm in the Whiteboard Model

In this section, we present a deterministic algorithm for the uniform deployment in the whiteboard model. We
assume that each agent has a distinct ID@bgk) bits, and knows neither nork. In the initial configuration,
there exists at most one agent on each node.
In section 4.1, we present an algorithm under the assumptiom thatk holds for some positive integer
In section 4.2, we will remove the assumption.

4.1 An algorithm for the case ofn = ck

Algorithm 1 consists of two phases: selection phase and deployment phase. In the selection phasehaaamique
nodeis selected as a reference node of the uniform deployment. In the deployment phase, each agent determines,
based on the base node, theget nodesvhere agents should stay to attain the uniform deployment, and moves

to a target node.

1. selection phase:In this phase, the home node of the agent,agy, with the minimum ID is selected as the
base node. Each agent finds the distance from its home node to the base node, and in addition, it finds the
numbem of nodes and the numbkrof agents.

When initialized, each agent writes its ID to whiteboard of its home node, and starts traversing the ring.
During the traversal, each agent keeps, in its variables, the smallest ID it ever found (vauniaib)ethe
distance from its own home node to the home node of the agent withinidl (dis), the number of nodes

it visited so far (nodenujnand the number of agent IDs it found so fagéntnunp Each agent can detect
completion of the traversal when it finds its own ID in the whiteboard of the visiting node. At this time,

4
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Figure3: Algorithm 1: The base node and the target nodes (Each number denotes an agent ID.)

these variables correctly store the minimum agent ID, the distance from its home node to the base node,
the numben of nodes and the numbkrof agents.

2. deployment phase:In this phase, by local computation using the results of the selection phase, all agents
determine a common set btarget nodes. Then each agent moves to a target node to realize the uniform
deployment. Notice that all the agents start the deployment phase at the same time, since they completed
the selection phase at the same. Also notice that, at the beginning of the deployment phase, each agent
stays at its own home node that is distinct from others.

All the agents select the set kftarget nodes as follows: the base node is first selected, andlother

nodes are selected so that theodes are uniformly distributed in the ring, that is, the distance between

two adjacent base nodes shouldriyé (Figure 3). An agent remains staying at its home node when it

is a target node. Otherwise, the agent starts moving to a target node. It traverses the ring until it finds a
vacant target node: every time agamtaches a target node, it stays at the node if the node is vacant (i.e.,

no agent is staying), otherwise (or the target node is already occupied by another agent) it keeps moving
to the next target node. The movement to the target nodes can be realized using the distance to the base
nodedis and the interval length/k between the adjacent target nodes. Remark that no two agents reach
the same target node at the same time since all the agents start moving at the same time and from distinct
nodes.

We give the pseudocode of this algorithm in Algorithm 1. The following theorem clearly holds.

Theorem 2 Algorithm 1 solves the uniform deployment problem in the whiteboard model. The algorithm
requiresO(logk) memory for each nod&)(logn) memory for each agen®(n) time, andO(kn) total number
of agent moves. O

4.2 The uniform deployment for the case oh # ck

To remove the restriction af= ckimposed in Subsection 4.1, only the parts for determining the target nodes and

for moving to a target node should be modified. In the casertlighot a multiple ok, the distance between

some adjacent target nodes should[bgk] while that between some other adjacent target nodes should be
In/k|. The target nodes should be determined by each agent so that the decisions of different agents should
be identical. Since all the agents recognize the same node as the base node, the common target nodes can b
determined using the base node as a reference nodeicLs the base node (and thus a target node), and

r =nmodKk. The target nodes other thag is determined ag,,,Va,, .. .,Va, ,, Wherea; (j=1,2,....,k 1)is

defined as follows:
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Algorithm 1 A uniform deployment algorithm on the whiteboard model
Behavior of an agent. Lev; be its home node.
1: /* selection phase */
2. dis,nodenumagentnum=0 ; minid:=itsown ID ;
3: Writeitsown ID toWB ; //WB is the whiteboard of;.
4: repeat
5. if WB; #.L for the current node; then
6
7
8
9

Incremeniagentnunby 1 ;
if WBj < minid then
minid :=WB; ;
; dis:= nodenum;

10: Move to the next node and incremerdenunby 1 ;
11: until WB; =itsown ID ; // Completion of the ring traversal aftetime units from the beginning.
12: /* deployment phase */
13: dy := dismod (nodenum/agentnum;
14: Moved, times ; // Move to the nearest target node.
15: repeat
16: if no other agent is on the current ndatien terminate ;
17. elsemovenodenumggentnuntimes ; // Move to the next target node.
18: until O ;

Whenan agent moves to the next target node (lines 14 and 17 of Algorithm 1), it has to determine the
number of moves required to reach the next target node. It can be calculated using the current distance to the
base node, the numbeiof nodes and the numbkiof agents.

5 Algorithms in the Token Model

In this section, we present two algorithms for the uniform deployment in the token model. Remind that each
agent is anonymous in this model. In the initial configuration, each agent stays at its home node distinct from
others and holds one token. First, we assameck for some positive integer, and this assumption is removed

in the end of each subsection. In Algorithms 2 and 3, we assume that each agentkknBath the algo-

rithms requireO(kn) of moves in total, hence are asymptotically optimal in terms of the total number of agent
moves. And also, Algorithm 2 realizes the uniform deployment in asymptotically optimal timee)),

while Algorithm 3 reduces the memory per agen@©@ogn) by allowingO(nlogn) time.

5.1 An algorithm with the optimal time complexity

Similarly to Algorithm 1, Algorithm 2 consists of the following two phases.

1. selection phase: In this phase, base nodes are selected as reference nodes for the uniform deployment. The
difference from Algorithm 1 is as follows: Algorithm 1 selectuniquebase node using agent IDs.
However, in the token model, agents are anonymous and thus it is impossible to select a unique base node
(because of the impossibility of symmetry breaking). Instead, Algorithm 2 is allowed to select multiple
base nodes when the initial locations of agents are periodic (or symmetric). In addition, the mushber
nodes are found in this phase.

When initialized, each agent releases its own token on its home node and starts traversing the ring. The
token remains at the node during execution of the algorithm and is used to notify agents that the node
is the home node of an agent. During the traversal, each agent memorizes the distance between every
pair of two adjacent tokens. Each agent can detect completion of the traversal by counting the number of
tokens it found since the agent knows the nurmbefagents (or tokens). At this time, the agent knows a
sequence of distanc&= (do,ds,...,dk 1) whered; (0 i k 1)is the distance from theth token it
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Figure4: Algorithm 2: The base nodes and the target nodes

found to the(i + 1)-th token. For completeness, the agent considers its own token as the O-th &t the
tokens.

The agent determines the base nodes ffbm (do,ds,...,dx 1) as follows. LetZ be the set ok se-
quences obtained by all the possible cyclic shiftbof.e., 7 = {(di,di11,...,disx 1) [0 i k 1}
where operations to an index of the distance assume calculation under rkodtlken, the agent selects,
as a base node, the node holdingltkta token wher(dy, dn 1, . ..,dn ik 1) IS lexicographically minimum
amongZ. When the distance sequeridas periodic, multiple nodes are selected as base nodes (Fig. 4).

It is quite important to confirm that the base node sets selected by different agents are identical. Let
D = (do,d,...,dc 1) andD’ = (dy, ds,...,d; ;) be the distance sequences that two distinct ageatsl
a obtain respectively. The sequenéandD’ may be different, but the sequence sgtand %’ obtained
by the cyclic shifts oD andD’ are identical sinc®’ is a cyclic shift ofD. Thus, agenta anda’ select
the same set of the base nodes.

2. deployment phase:In this phase, by local computation using the base nodesetdk, each agent deter-
mines the target node where it should stay to realize the uniform deployment, and moves to the node.

The base nodes selected in the selection phase are uniformly distributed on the ring network, that is, the
distance between every pair of two adjacent base nodes is the same. Moreover, the number of agents and
their locations between every pair of two adjacent base nodes are also the same. Therefore, the base nodes

can be the target nodes of the uniform deployment. Thus, all the agents select th& seget nodes
as follows: the base nodes are first selected, and &thdy nodes are selected so that theodes are
uniformly distributed in the ring, whereis the number of the base nodes (Figure 4),

Since the distance sequerize- (do,ds, ..., dk 1) is the full information of the agent locations and all the
agents select the same set of kitarget nodes, each agent can determine the target node it should stay at
as follows. Letv be the nearest base node from the agenthsitie the distance from its home nodesto
The agent can find fror® that it is thej-th agen(0 j k 1) from the base node(where the agent
staying atv is considered as the 0-th agent). Then, the agent can reach its own target hode by moving
((dis+]j n/k) modn) times.

Algorithm 2 describes the pseudocode. The following theorem holds .

Theorem 3 Algorithm 2 solves the uniform deployment problem in the token model. The algorithm requires
O(1) memory for each nodé)(klogn) memory for each agen®(n) time, andO(kn) total number of agent
moves. O

The restriction ofh = ckimposed in the above can be removed by the similar modification to that in Sub-
section 4.2. Leb be the number of the base nodes, andn modk. The distance of every pair of adjacent base

7
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Algorithm 2 A uniform deployment algorithm with the optimal time complexity on the token model
Behavior of an agent. Lev; be its home node.
. I* selection phase */
Release a token at its home nogle
x:=0 ; [//xdenotes the number of tokens the agent found so far.
repeat
Move to the next token with measuring the distadgé&rom the previous token ;
X:=X+1;
until x=k ; // Continue until the agent returns to its home nede
D:=(do,ds,...,dk 1); //Disthe distance sequence between tokens starting from its own token.
n:=dp+di+ +dk 1 ;
: h:=the minimum nonnegative integiesuch thatd;,d;1,...,di.x 1) islexicographically minimum among
.@:{(dj,dj_,_l,...,de 1)‘0 j k l} ;
11: dis:= (do+di1+ +dy 1) modn ; //disis the distance to the nearest base node.
12: /* deployment phase */
13: j:=k h; [/ The agentis thg-th agent from the base nodg gis.
14: Move ((dis+] n/k) modn) times and terminate the algorithm ;

[EnY

[EnY
o

nodesis identical even in the case of# ck, and isn/b= (|n/k|] k+r)/b=|n/k| k/b+r/b (notice that

k/b andr /b are integers). This implies that we should seletti 1 target nodes between two adjacent base
nodes so that the firsy'b intervals between adjacent target nodes shoulphBk] and others should b1 /K.

With considering the above, each agent can determine its own target node by local computation so that all the
agents can spread over the ring to attain the uniform deployment.

5.2 An algorithm with O(logn) agent memory

Algorithm 2 in the previous subsection usesklogn) memory per agent to store the full information of the
initial locations of all agents. The full information allows each agent to select the common set of base nodes
whose sizeexactlydepends on the symmetry degree of the initial locatidnbase nodes are selected when

the distance sequence is periodic and consiststohes repeated subsequences. However, whether the initial
locations of agents are periodic or not, multiple base nodes are helpful to realize the uniform deployment when
(a) they are uniformly distributed in the ring and (b) the number of the base nodes is a diviksd@uth base

nodes can be selected without drastic increase in the number of agent moves even if the full information of
the initial agent locations is not available at each agent. This is the key idea for reducing the agent memory to
O(logn). Similarly to the previous two algorithms, the algorithm consists of the following two phases. Notice
that we assume = ck for some positive integerin the following description.

1. selection phase:ln this phase, some of the home nodes are selected as the base nodes, and they are used
as reference nodes for the uniform deployment. The selected base nodes should satisfy the following
condition called thdase node conditionl) there exists at least one base node, 2) the distance between
every pair of two adjacent base nodes is identical, and 3) the number of the home nodes between every
pair of two adjacent base nodes is identical. The last condition is introduced to guarantee that the number
of the selected base nodes is a divisok.di addition, the number of nodes are found in this phase.

All the agents complete the selection phase at the same time. When an agent terminates the selection
phase, it stays at its home node and knows whether its home node is selected as a base node or not. We
call an agent éeaderwhen its home node is selected as a base node, and céillibaer otherwise.

We describe the details of this phase later.

2. deployment phase:In this phase, each agent determines the set of the target nodes and moves to a target
node. From the base node conditions, the base nodes are first selected as the target nodels.bketting
the number of the base nodes, otkerb target nodes are selected so thatkh@rget nodes are uniformly
distributd in the ring, that is, the distance between two adjacent target nodes should be

8
169



All the agents start the deployment phase at the same time. Each leader stays at its own home node since
the home node is a target node. A follower knows that it is not a leader but does not know the locations
of the leaders. Thus, each follower moves to search the nearest base node. The follower detects its arrival
at the base node when it first reaches a node where an agent (or a leader) is staying. After reaching the
base node, the agent moves to a vacant target node in the same way as Algorithm 1 and stays at the node:
it movesn /k times to the next target node. Every time the agent reaches a target node, it stays at the node
if the node is vacant, otherwise it moves to the next target node. It is easy to move to the next target node
since the distance between the adjacent target nodagk.is

The selection phase

In the followings, we explain how the selection phase selects the base nodes satisfying the base node condition.
To select the base nodes, some agents are slected as leaders and the home nodes of the leaders are selected
the base nodes. The state of an ageatis/e,leaderor follower. Active agents are candidates of leaders, and
initially all agents are active. As the selection phase progresses, the number of active agents decreases since
some agents become followers. And finally the remaining active agents become leaders at the same time. Once
an agent becomes a follower or a leader, it never changes its state.

When initialized, each agent releases its own token on its home node to notify agents that the node is the
home node of an agent. The selection phase consistegi| sub-phases. Each sub-phase at least halves the
number of active agents or makes all active agents leaders. By repeating such suflqgidsemes, some
agents are selected as leaders so that their home nodes should satisfy the base node condition. Notice that all
active agents may become leaders befored kbgk|-th sub-phase starts. Even in this case, all the agents spend
[logk] sub-phases in the selection phisehile all the agents (leaders or followers) only keep staying at their
home nodes after the leaders are selected.

We explain the details of the sub-phase. At the beginning of each sub-phase, each agent stays at its own
home node. During the sub-phase, each agent traverses the ring once if it is active, or keeps staying at its home
node if it is a leader or a follower. Thus, in the following, we identify the agent state with the state of its home
node, that is, we say that a nodés active when the agent with home nodes active (the same for followers
and leaders). To reduce the number of active agents, an ID (not necessarily unique) is assigned to each active
agent. The ID of an active ageats given agd, fnum) whered is the distance from its home nouga) to the
next active node, sayex, and f numis the number of follower nodes betwegyia) andvnex: (Figure 5). Notice
that the IDs of the same agent differ in different sub-phases since the set of active agents is reduced in every
sub-phase. We compare two IDs by the lexicographical ordefCfge= (di, fnumy) andID2 = (dp, fnumy),

ID1 < 1Dy if (dp < dp)V ((dp =d2) A (fnum < fnunyp)) holds.

Based on IDs, we reduce the number of active agentsajLle¢ an active agent araj be the next active
agent ofa;. LetID; andID; be the IDs ofa; anda; respectively. In each sub-phasg,decides whether it
remains active or not in the following way:

e Case that all active agents have the same ID: All the active agents (inclyjlinecome leaders. Notice
that the home nodes of the active agents satisfy the base node condition.

e Case that active agents have two distinct IDs or more: Agergmains active ilD; is the minimum
among IDs of all active agents ahid; # ID; holds. The second condition guarantees that, when active
agents with the minimum ID appear consecutively, only one of them remains active. This guarantees that
the number of active agents is at least halved in each sub-phase.

We explain the implementation of the sub-phase. In the sub-phase, each active; dgemrses the ring
once and determines the state transition as above. Thisriakestimes, and follower agents stay at their home
nodes during the unit times. Whileg; traverses the ring, it executes the following operations.

1. Getits own IDID; = (d;, fnum): Agentg; finds its own IDID; by moving from its home node,(g;) to
the next active node,ey With counting the numbers of nodes and follower agents (Figure 5). Note that,

IThisis for simplicity. A follower agent can detect that leaders have been selected if its home node is not visited by other agents
duringn time units. Thus, it is possible to complete the selection phase by spending one additional sub-phase after leaders are selected.
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Figure5: Algorithm 30 IDs of active agents

since all active agents are traversing the ring and all follower agents are staying at their homejnodes,
can detect its arrival at the next active node when it visits an empty home node (having a token).

2. Get the ID of its next active agent: Similarly, finds the ID of the next active agent af sayanex, by
moving to the next active node Bfex. Agenta; stores the ID 0Bnex; in 1D next

3. Compare its own ID with those of all active agents: During the traversal of the ring, ademts IDs of
all active agents one by one, and checks 1) whether its own ID is the minimum and 2) whether the IDs of
all active agents are identical. To check these, agédtgeps boolean variablesin (min=trueimpliesg;
has the minimum ID) andientical (identical = true implies that all the IDs; ever found are the same),
and it updates the variables (if necessary) every time it finds an ID of another agent.

4. Determine its state for the next sub-phase: Wédyarompletes the traversal, it determines its state for the
next sub-phase. Iflentical = true holds,a changes its state to the leader (in this case, all active agents
become leaders). In the caseidéntical = false g remains active imin=true andID; < IDex hold.
Otherwiseg; becomes a follower.

Algorithm 3 presents the pseudocode. In the first sub-phase, each agent finds themafmoeles, but the
code for findningn is omitted in the pseudocode. The following theorem holds.

Theorem 4 Algorithm 3 solves the uniform deployment problem in the token model. The algorithm requires
O(1) memory for each nod€(logn) memory for each agen®(nlogk) time, andO(kn) total number of agent
moves.

Proof. Itis obvious that Algorithm 3 solves the uniform deployment problem.

Each agent has three variablt3;, |Dnex, andIDgther, t0 Store IDs, each of which requir€glogn) mem-
ory. Since other variables requi@logn) memory or less, each agent requi@gogn) memory.

The time complexity i€D(nlogk) because the selection phase requirdsegk| unit times and the deploy-
ment phase requires at most@nit times.

Lastly, we consider the total number of moves. First, consider the selection phase. In each sub-phase, each
active agent traverses a ring once, and then at least half active agents become followers or all active agents
become leaders. Hence, in the beginning ofxttie sub-phase, the number of active agents is at iyt 1.

Since follower agents and leader agents never move in the selection phase, the total number of moves in the
selection phase is at mogt y jogk(K/2* Hn  2kn In the deployment phase, each follower moves to a target
node to achieve the uniform deployment. Each follower moves at mostrigs since it first moves to the
nearest base node, which requires at nmastoves, and then moves to a vacant target node, which requires at
mostn moves. Thus, the total number of moves in the deployment ph&3gig. Therefore, the total number

of agent moves i®©(kn). O

The restriction oh = ckimposed in the above can be removed by the similar modification to that in Algo-
rithm 2.

6 Conclusion

In this paper, we considered the uniform deployment of mobile agents in synchronous ring networks. The uni-
form deployment problem, which is a striking contrast to the rendezvous problem, is interesting to investigate.

10
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Algorithm 3 A uniform deployment algorithm witkd(logn) agent memory on the token model
Behavior of an agent. Le¥; be its home node.
1: /* selection phase */
2. state:=active; // The agentis active.
3: Release a token at the home nage
4: for s=1to [logk]
5. state:=subPhases$tate); // Traverse the ring and change its state.
6
7
8
9

. I* deployment phase */
. If state= follower then
Move to the first node where another agent is staying ; // Move to a base node.
while true do

10: Moven/ktimes; // Move to the next target node.
11: if no agent is staying at the currently visiting ndten break; // A vacant target node.
12: Terminate the algorithm.
function : subPhasestatg // statec {active,follower,leader}
13: if state= follower Or leader then
14:  Wait for nunit times ; // Wait for termination of the sub-phase.
15: return state;
16: Move to the next active node and get its ownID ;
17: if g stays aw; then // Only the agent is active.
18: return leader,
19: Move to the next active node and get thellD,ex Of the next active agent.
20: if IDj > IDpextthen min:= false identical:= false
21: else ifIDj = IDpext then min:=true; identical :=true;
22: elsemin:=true; identical:= false
23: while the currently visiting node is nat do
24:  Move to the next active node and dBXsther ;
25: if IDj > IDgther then min:= false identical:= false // There exists an agent with a smaller ID.
26: else ifIDj < IDgherthenidentical := false
27: if identical=truethen return leader ; // All active agents have the identical ID.
28: else ifmin=trueand ID; < IDpex then return active ; // The agent remains active.
29: else returnfollower ; // Otherwise, the agent become a fllower.

We proposed three algorithms that are asymptotically optimal in terms of the total number of agent moves.
Especially the latter two algorithms utilize the essential charactersitic of the uniform deployment problem: the
problem aims to attain the symmetry, and these algorithms solve the problem without breaking symmetry that
the initial agent locations have. Such an approach in designing mobile agent algorithms seems to be applicable
to other problems that aim to attain the symmetry.
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A Appendix

A.1 Proof of Theorem 2

Theorem 2 Algorithm 1 solves the uniform deployment problem in the whiteboard model. The algorithm
requiresO(logk) memory for each nod&)(logn) memory for each agen®(n) time, andO(kn) total number
of moves.

Proof. Itis obvious that Algorithm 1 solves the uniform deployment problem.
In the selection phasa,traverses the ring once, which takesnit times anch moves. Each agent moves to
a target node in the deployment phase, which takes atmast times andh moves. Thus the time complexity
is O(n) and the total number of moves@kn).
Each agent needs to keep an agent ID (or a candidate of the minimum ID) in vamialidethe distance to
a candidate of the base nodedis, the number of nodes it ever visitedrindenumand the number of agent
IDs it ever found inagentnum Thus, each agent requir€§logn) memory.
The whiteboard of a node has to store an agent ID when it is the home node of the agent, and thus it requires
O(logk) memory. O

A.2 Proof of Theorem 3

Theorem 3 Algorithm 2 solves the uniform deployment problem in the token model. The algorithm requires
O(1) memory for each nod&(klogn) memory for each agen®(n) time, andO(kn) total number of moves.

Proof. Itis obvious that Algorithm 2 solves the uniform deployment problem.

In the selection, each agent traverses the ring once tB gehich takesn unit times andh moves. In the
deployment phase, each agent moves to its own target node, which takes aumibtitnes anch moves. Thus
the time complexity i$(n) and the total number of moves@kn).

Each agent stores the sequence of distafites(do,ds,...,dc 1). Sinced; is at mostn, this requires
O(klogn) memory. Since other variables require at m@gtogn) memory, each agent requir€klogn)
memory. Itis clear that each node requi@d) memory since it is the token model. O
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